Letter

Deprotonation and Anionic Rearrangements of Organometallic Compounds. III. The First Carbon–Carbon Bond-forming Reaction of an η^1 -Formyl Ligand

POH CHOO HEAH and J. A. GLADYSZ*

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (U.S.A.) (Received November 9, 1984; accepted January 28, 1985)

Formyl ligands are likely intermediates in the homogeneous, metalcatalyzed conversion of CO/H₂ to oxygenated organic molecules [1 - 7]. As such, their chemistry is of intrinsic interest. Although many metal η^1 -formyl complexes have now been isolated [8 - 12], they have not to our knowledge been observed to participate in carbon-carbon bond-forming reactions. In this communication, we describe the first such process, which is initiated by treatment of formyl complex (η^5 -C₅H₅)Re(NO)(PPh₃)(CHO) (1) [13] with strong base.

Reaction of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CHO)$ (1) in THF at -78 °C with $Li^+ N(i-C_3H_7)_2$ (LDA, 1.9 equiv, 40 min) and then $CH_3OSO_2CF_3$ (2.6 equiv) gave, after workup, the formylcyclopentadienyl complex (η^{5} - C_{4} CHO)Re(NO)(PPh₃)(CH₃) (2) in 68% yield [eqn. (1)]. The structure of 2 followed readily from its ¹H and ¹³C NMR spectra, which showed patterns characteristic of a monosubstituted cyclopentadienyl ligand [14, 15]. The methyl ¹H NMR resonance exhibited phosphorus coupling (J = 5.8 Hz) typical for a Re(PPh₃)(CH₃) grouping [13], as opposed to a η^{5} -C₅H₄CH₃ (J < 1 Hz) [14, 15] ligand. The migration of the formyl ligand from rhenium to carbon was evidenced by a marked increase in frequency in the IR absorption band corresponding to ν (C=O) (thin film: 1, 1552 cm⁻¹; 2, 1673 cm⁻¹). Summary of the characterization of 2; m.p. $133.5 - 135 \,^{\circ}C$ (dec.). IR (cm⁻¹, thin film): ν (C=O) 1673 (s), ν (N=O) 1638 (s). ¹H NMR (δ , CD₂Cl₂): 9.27 (s, 1H), 7.47 - 7.33 (m, 15H), 5.57 (m, 1H), 5.01 (m, 2H), 4.56 (m, 1H), 0.79 (d, $J_{\rm HP} = 5.7$ Hz, 3H). ¹³C NMR (ppm, CD₂Cl₂): CHO at 185.4 (s), PC₆H₅ at 135.6 (d, $J_{CP} = 52.9 \text{ Hz}$, *ipso*), 134.3 (d, $J_{CP} = 10.2 \text{ Hz}$), 131.1 (s, *para*), 129.2 (d, $J_{CP} = 10.2 \text{ Hz}$); C₅H₄X at 100.7 (s), 95.7 (d, $J_{CP} = 4.6 \text{ Hz}$, ipso), 92.4 (s), 90.3 (s), 87.6 (s); CH₃ at -30.5 (d, $J_{CP} = 7.2$ Hz). ³¹P NMR (ppm, CD₂Cl₂): 19.7 ppm. Mass spectrum (m/e, ¹⁸⁷Re, 70 eV); 587 (M⁺, 100%), 572 $(M^+ - CH_3, 26.2\%)$, 262 (PPh₃⁺, 71.5%). Analysis: calculated for C₂₅H₂₃NO₂PRe; C, 51.19; H, 3.92%. Found: C, 51.19; H, 3.96%.

^{*}Author to whom correspondence should be addressed.

The reaction of 1 with LDA was monitored by ³¹P NMR spectroscopy at -86 °C. The starting material (16.0 ppm) was rapidly converted to a new species with a resonance at 32.3 ppm (br m). After 5 min, a new resonance at 41.6 ppm (br m) was also observed. This replaced the 32.3 ppm resonance over the course of 50 min. Subsequent addition of CH₃OSO₂CF₃ (-86 °C) gave 2 (20.1 ppm) and other lesser products (25.3, 25.1, 24.7, 23.2 ppm) which, with time and/or warming, decreased as 2 increased. In a separate experiment, $(\eta^{5}-C_{5}H_{c})Re(NO)(PPh_{3})(CDO)$ (1- d_{1} ; (95 ± 2):(5 ± 2) d_{1}/d_{0}) was treated with LDA and then CH₃OSO₂CF₃ as described above. The product was shown by mass spectral analysis to be $(\eta^{5}-C_{5}H_{4}CDO)Re(NO)(PPh_{3})(CH_{3})$ (2- d_{1} ; (95 ± 2):(5 ± 2) d_{1}/d_{0}).

Based upon the above data, and observations with analogous acyl complexes [14], we propose that formyl complex 1 is initially deprotonated on the cyclopentadienyl ligand to give $(\eta^{5}-C_{5}H_{4}Li)Re(NO)(PPh_{3})(CHO)$ (3) [eqn. (2)]. We assign the 32.3 ppm ³¹P NMR resonance to 3, and propose that the formyl ligand undergoes a subsequent migration to give rheniumcentered anion Li⁺ $[(\eta^{5}-C_{5}H_{4}CHO)Re(NO)(PPh_{3})]^{-}$ (4) [eqn. (2)]. Anions $[(\eta^{5}-C_{5}H_{4}X)Re(NO)(PPh_{3})]^{-}$ characteristically have ³¹P NMR chemical shifts in the 41 - 47 ppm range [14, 15]. Subsequent addition of CH₃OSO₂CF₃ gives principally 2. The by-products observed spectroscopically might arise via methylation of the formyl moiety.

Finally, a 0.95:1.00 mixture of 1 and $(\eta^5 \cdot C_5 D_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(\operatorname{CDO})$ (1- d_6 ; (85 ± 1):(15 ± 1) d_6/d_5) was reacted with LDA and then $\operatorname{CH}_3 \operatorname{OSO}_2 \operatorname{CF}_3$ as in eqn. (1). Careful mass spectrometric analysis of the resulting $2 \cdot d_x$ showed a (92 ± 2):(8 ± 2) ratio of $2 \cdot d_0/2 \cdot d_1$ and a (85 ± 1):(15 ± 1) ratio of $2 \cdot d_5/2 \cdot d_4$. Hence, the rearrangement $3 \rightarrow 4$ is largely intramolecular.

Other researchers have isolated complexes which might plausibly be viewed as arising from carbon-carbon coupling of formyl ligands [16, 17]. For example, Marks has found that when labile η^2 -formyl complexes (η^5 -C₅Me₅)₂(RO)Th=C(H)O are generated from (η^5 -C₅Me₅)₂(RO)Th(H) and CO, enediolate complexes (η^5 -C₅Me₅)₂(RO)ThOC(H)=C(H)OTh(OR)(η^5 -C₅Me₅)₂ are obtained [16 - 18]. However, mechanistic experiments indicate reduction

of the η^2 -formyl ligand by its hydride precursor to be the initial step. Similar enediolate complexes can be isolated from the reaction of $(\eta^5-C_5Me_5)_2Zr(H)_2$ and $[(\eta^5-C_5Me_5)_2Sn(H)]_2$ with CO [19, 20], but the nature of the carboncarbon bond-forming steps are as yet unknown.

The carbon-carbon bond-forming rearrangement $3 \rightarrow 4$ suggests new strategies for the trapping of transient formyl complexes. These have potential application in the design of new CO reduction catalysts. Similar anionic rearrangements have recently been observed with a variety of related cyclopentadienyl complexes [14, 21, 22]. Additional details of these reactions will be reported in future publications from this laboratory.

Acknowledgements

We thank the Department of Energy for support of this research. Mass spectrometers utilized were obtained via National Science Foundation and University of Utah Institutional Funds Committee Grants.

References

- 1 C. Masters, Adv. Organometall. Chem., 17 (1979) 61.
- 2 E. L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479.
- 3 C. K. Rofer-DePoorter, Chem. Rev., 81 (1981) 447.
- 4 J. R. Blackborow, R. J. Daroda and G. Wilkinson, Coord. Chem. Rev., 43 (1982) 17.
- 5 W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 21 (1982) 117.
- 6 G. Henrici-Olivé and S. Olivé, J. Mol. Catal., 18 (1983) 367.
- 7 B. D. Dombek, Adv. Catal., 32 (1983) 325.
- 8 J. A. Gladysz, Adv. Organometall. Chem., 20 (1982) 1.
- 9 C. E. Sumner and G. O. Nelson, J. Am. Chem. Soc., 106 (1984) 432.
- 10 D. H. Gibson, K. Owens and T.-S. Ong, J. Am. Chem. Soc., 106 (1984) 1125.
- 11 G. R. Steinmetz, E. D. Morrison and G. L. Geoffroy, J. Am. Chem. Soc., 106 (1984) 2559.
- 12 G. Smith and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., (1984) 1203.
- 13 W. Tam, G.-Y. Lin, W.-K. Wong, W. A. Kiel, V. K. Wong and J. A. Gladysz, J. Am. Chem. Soc., 104 (1982) 141.
- 14 P. C. Heah and J. A. Gladysz, J. Am. Chem. Soc., 106 (1984) 7636.
- 15 G. L. Crocco and J. A. Gladysz, J. Chem. Soc., Chem. Commun., (1985) 283.
- 16 P. J. Fagan, K. G. Moloy and T. J. Marks, J. Am. Chem. Soc., 103 (1981) 6959.
- 17 D. A. Katahira, K. G. Moloy and T. J. Marks, Organometallics, 1 (1982) 1723.
- 18 K. G. Moloy and T. J. Marks, J. Am. Chem. Soc., 106 (1984) 7051.
- 19 P. T. Wolczanski and J. E. Bercaw, Acc. Chem. Res., 13 (1980) 121.
- 20 W. J. Evans, J. W. Grate and R. J. Doedens, J. Am. Chem. Soc., 107 (1985) 1671.
- 21 W. K. Dean and W. A. G. Graham, Inorg. Chem., 16 (1977) 1061.
- 22 S. R. Berryhill and B. Sharenow, J. Organometall. Chem., 221 (1981) 143.