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Formyl ligands are likely intermediates in the homogeneous, metal- 
catalyzed conversion of CO/H2 to oxygenated organic molecules [l - 71. As 
such, their chemistry is of intrinsic interest. Although many metal 7)‘-formyl 
complexes have now been isolated [8 - 121, they have not to our knowledge 
been observed to participate in carbon-carbon bond-forming reactions. In 
this communication, we describe the first such process, which is initiated by 
treatment of formyl complex ($-C,H,)Re(NO)(PPh,)(CHO) (1) [13] with 
strong base. 

Reaction of (~5-C5H,)Re(NO)(PPh,)(CHO) (1) in THF at -78 “C 
with Li+ - N(i-C3H,)* (LDA, 1.9 equiv, 40 min) and then CH@S02CFs 
(2.6 equiv) gave, after workup, the formylcyclopentadienyl complex ($‘- 
C,H,CHO)Re(NO)(PPh,)(CH,) (2) in 68% yield [eqn. (l)]. The structure of 
2 followed readily from its ‘H and 13C NMR spectra, which showed patterns 
characteristic of a monosubstituted cyclopentadienyl ligand [14,15]. The 
methyl ‘H NMR resonance exhibited phosphorus coupling (J = 5.8 Hz) 
typical for a Re(PPh3)(CH3) grouping [13], as opposed to a TI~-C~H&H~ (J< 
1 Hz) 114,151 ligand. The migration of the formyl ligand from rhenium to 
carbon was evidenced by a marked increase in frequency in the IR absorption 
band corresponding to v(C=O) (thin film: 1,1552 cm-‘; 2,1673 cm-‘). Sum- 
mary of the characterization of 2: m.p. 133.5 - 135 “C (dec.). IR (cm-‘, thin 
film): u(C=O) 1673 (s), v(NS) 1638 (s). ‘H NMR (6, CD&l,): 9.27 (s, lH), 
7.47 - 7.33 (m, 15H), 5.57 ( m, lH), 5.01 (m, 2H), 4.56 (m, lH), 0.79 (d, 
JHp = 5.7 Hz, 3H). 13C NMR (ppm, CD&&): CHO at 185.4 (s), P&H5 at 
135.6 (d, Jcp = 52.9 Hz, ipso), 134.3 (d, Jcp = 10.2 Hz), 131.1 (s, para), 
129.2 (d, Jcp = 10.2 Hz); C,HS( at 100.7 (s), 95.7 (d, Jcp = 4.6 Hz, ipso), 
92.4 (s), 90.3 (s), 87.6 (s); CHJ at -30.5 (d, Jcp = 7.2 Hz). 31P NMR (ppm, 
CD2C12): 19.7 ppm. Mass spectrum (m/e, 18’Re, 70 eV); 587 (M+, lOO%), 
572 (M+ - CH3, 26.2%), 262 (PPh3+, 71.5%). Analysis: calculated for 
Cz5Hz3NOzPRe; C, 51.19; H, 3.92%. Found: C, 51.19; H, 3.96%. 
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The reaction of 1 with LDA was monitored by 31P NMR spectroscopy 
at -86 “C. The starting material (16.0 ppm) was rapidly converted to a new 
species with a resonance at 32.3 ppm (br m). After 5 min, a new resonance 
at 41.6 ppm (br m) was also observed. This replaced the 32.3 ppm resonance 
over the course of 50 min. Subsequent addition of CH30S02CF3 (-86 “C) 
gave 2 (20.1 ppm) and other lesser products (25.3, 25.1, 24.7, 23.2 ppm) 
which, with time and/or warming, decreased as 2 increased. In a separate 
experiment, ($-C,HIJRe(NO)(PPh3)(CDO) (l-d,; (95 + 2):(5 + 2) d,/d,) was 
treated with LDA and then CH30S02CF3 as described above. The product 
was shown by mass spectral analysis to be ($-C,H,CDO)Re(NO)(PPh3)(CH3) 
(2-d,; (95 f 2):(5 + 2) d,/d,). 

Based upon the above data, and observations with analogous acyl com- 
plexes [ 141, we propose that formyl complex 1 is initially deprotonated on 
the cyclopentudienyl ligand to give (~5-C,H,Li)Re(NO)(PPh3)(CHO) (3) 
[eqn. (2)]. We assign the 32.3 ppm 31P NMR resonance to 3, and propose 
that the formyl ligand undergoes a subsequent migration to give rhenium- 
centered anion Li+ [(n5-C,H,CHO)Re(NO)(PPh,)l- (4) [eqn. (2)]. Anions 
[(q’-C,H,X)Re(NO)(PPh,)l- characteristically have 31P NMR chemical shifts 
in the 41 - 47 ppm range [ 14,151. Subsequent addition of CH30S02CF3 
gives principally 2. The by-products observed spectroscopically might arise 
via methylation of the formyl moiety. 
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Finally, a 0.95:1.00 mixture of 1 and (~5-C5D5)Re(NO)(PPh3)(CDO) (l- 
d,; (85 f 1):(15 + 1) d,/d,) was reacted with LDA and then CH,OSO&F, 
as in eqn. (1). Careful mass spectrometric analysis of the resulting 2-d, 
showed a (92 f 2):(8 + 2) ratio of 2-d,/2-dl and a (85 + 1):(15 + 1) ratio of 
2-d,/2-d4. Hence, the rearrangement 3 + 4 is largely intramolecular. 

Other researchers have isolated complexes which might plausibly be 
viewed as arising from carbon-carbon coupling of formyl ligands [16,17]. 
For example, Marks has found that when labile ~2-formyl complexes (v5- 
C5Me5)z(RO)Tm are generated from (~5-C5Me5)z(RO)Th(H) and CO, 
enediolate complexes (n5-C5Me5),(RO)ThOC(H)=C(H)OTh(OR)(q5-C5Me5)z 
are obtained [ 16 - 181. However, mechanistic experiments indicate reduction 
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of the n2-formyl ligand by its hydride precursor to be the initial step. Similar 
enediolate complexes can be isolated from the reaction of (q5-CsMe,),Zr(H), 
and [($-C5Me5)2Sn(H)]2 with CO [19,20], but the nature of the carbon- 
carbon bond-forming steps are as yet unknown. 

The carbon-carbon bond-forming rearrangement 3 + 4 suggests new 
strategies for the trapping of transient formyl complexes. These have poten- 
tial application in the design of new CO reduction catalysts. Similar anionic 
rearrangements have recently been observed with a variety of related cyclo- 
pentadienyl complexes [14,21,22]. Additional details of these reactions 
will be reported in future publications from this laboratory. 
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