ANIONIC 2,6-PYRIDINEDICARBOXYLATE COMPLEXES WITH SOME DIVALENT FIRST-ROW TRANSITION METALS

LAWRENCE C. NATHAN,* DONALD C. ZAPIEN, ANNE M. MOORING, CHRISTINE A. DOYLE and JULIE A. BROWN

Department of Chemistry, Santa Clara University, Santa Clara, CA 95053, U.S.A.

(Received 19 July 1988; accepted 3 October 1988)

Abstract—A series of $Na_2[M(pdc)_2] \cdot nH_2O$ complexes (M = Mn^{II}, Co^{II}, Ni^{II}, Cu^{II}, and Zn^{II}; pdc^{2-} = pyridine-2,6-dicarboxylate; n = 2 or 3) have been synthesized and characterized via molar conductance, magnetic susceptibility, IR and electronic spectral measurements, and thermogravimetry. The compounds are 2:1 electrolytes in aqueous solution and contain six-coordinate anionic complex ions. The loss of water and the decomposition of the anhydrous salts differ from compound to compound in this series; residues consist of Na₂CO₃ and metal oxide.

Pyridine-2,6-dicarboxylic acid (also known as dipicolinic acid and abbreviated herein as H₂pdc) has been studied extensively as a Lewis base. The interest in this ligand seems to centre on the versatile yet unpredictable manner in which it coordinates to a variety of metals. For example, X-ray studies shown that complexes have such as Ag(Hpdc)₂ \cdot H₂O¹ and Cu(Hpdc)₂ \cdot 3H₂O² actually contain one neutral H_2 pdc and one pdc²⁻ ligand, while Ni(Hpdc)₂ \cdot 3H₂O³⁻⁵ has two Hpdc⁻ ligands. In contrast to the tridentate coordination of the ligands in the above complexes, Hpdc⁻ is bidentate in $V(Hpdc)_3 \cdot 3H_2O^6$ Other types of complexes which have been reported, include some polymeric $M(pdc) \cdot nH_2O$ species (M = Co^{II}, Ni^{II}, Cu^{II}; n = 0, 2, or 3),⁷⁻⁹ some mixed-ligand complexes with acetylacetonate, 1,10-phenanthroline, 2,2'-bipyridyl, or 2,2',2''-terpyridyl,⁹ a series of $M_2(pdc)$ $(Hpdc)_2 \cdot nH_2O$ complexes $(M = Co^{II}, Ni^{II}, Cu^{II};$ n = 0 or 2),⁹ and a series of lanthanide complexes of the types $M(Hpdc)_3 \cdot H_2O$ and M(pdc) $(Hpdc)(H_2O)_n (n = 4 \text{ or } 6).^{10,11}$

Based upon the coordination number of six, commonly adopted by many transition metals, and the ability of pdc^{2-} to function as a tridentate ligand, one expects to find anionic complexes of the type $[M(pdc)_2]^{x-}$ (x = 1 or 2). A number of such complexes has been reported for trivalent metal ions, examples being Na[M(pdc)_2]·2H_2O (M = Ru^{III}, Ir^{III}),¹² Na[Cr(pdc)₂]·1.5H₂O,¹³ Rh[Cr(pdc)₂]¹⁴ and some Nd^{III} and Yb^{III} complexes of the type Na₃[M(pdc)₃]·*n*H₂O.¹⁵ Apparently similar anionic complexes with divalent metal ions have not been studied. This work focuses on the series Na₂[M(pdc)₂] where $M = Mn^{II}$, Co^{II}, Ni^{II}, Cu^{II} and Zn^{II}. Other anionic complexes previously reported included (Ph₄As)₂[U(pdc)₃]·3H₂O¹⁶ and (Ph₄As)₂[UO₂(pdc)₂]·6H₂O.¹⁷

RESULTS AND DISCUSSION

Reaction of divalent metal carbonates and/or hydroxides with H_2 pdc in aqueous solution in 1:1 or 1:2 mole ratios leads to $M(pdc) \cdot nH_2O$ and $M(Hpdc)_2 \cdot nH_2O$, respectively,^{2,7,8,18} with M = Co^{II} , Ni^{II} and Cu^{II} , and n = 0, 2, or 3. In this work, anionic complexes were prepared in aqueous solution by the reaction of divalent (hydrated) metal acetates, H₂pdc and NaOH in a 1:2:2 mole ratio. Elemental analyses and thermogravimetric data confirm the stoichiometry of the complexes as $Na_2[M(pdc)_2] \cdot nH_2O$ where $M = Mn^{II}$ and Co^{II} with n = 2, and where $M = Ni^{II}$, Cu^{II} and Zn^{II} with n = 3. Conductance measurements on 0.001 M aqueous solutions (Table 1) indicate the presence of 2:1 electrolytes, for which Λ_M is expected to be in the 230-270 cm² ohm⁻¹ mol⁻¹ range.¹⁹ While the reason for the slightly low values for the Ni^{II} and Cu^{II} complexes is unknown, the behaviour is similar to that observed for the Rh^{III} and Ir^{III}

^{*} Author to whom correspondence should be addressed.

 $Na[M(pdc)_2]$ complexes, where Λ_M values in DMF fell essentially into the non-electrolyte range.¹²

IR data on the solid Na₂[M(pdc)₂] • nH₂O compounds are consistent with coordination of pdc²⁻. The $\bar{\nu}_{sym}$ (COO) band is shifted as expected from the free ligand value of 1290 cm⁻¹ into the range 1376–1360 cm⁻¹. Similarly, the $\bar{\nu}_{asym}$ (COO) band is shifted from the free ligand value of 1658 cm⁻¹ into the range 1629–1613 cm⁻¹, and no bands appear near 1700 cm⁻¹ as was the case when Hpdc⁻ or H₂pdc was also present, such as in complexes of the type M₂(pdc)(Hpdc)₂.⁹ The shift, $\Delta \bar{\nu}_{asym}$ (COO), of about 40 cm⁻¹ is consistent with the absence of an extended interaction in which the λC =O group of

one ligand interacts with a second metal centre.¹² In addition, the extremely broad band in the 3200–2400 cm⁻¹ range due to hydrogen-bonded —COOH groups in H₂pdc is absent in the complexes, further confirming complete deprotonation of H₂pdc. The typical upward shift of major pyridine ring bands is indicative of coordination of the ring nitrogen. A broad band centred at about 3390 cm⁻¹ appears in the spectrum of the Ni^{II} and Cu^{II} complexes, due to the presence of the water of hydration. The Mn^{II}, Co^{II} and Zn^{II} complexes show a similar broad band centred around 3200 cm⁻¹, but each displays an additional sharp shoulder at 3534 cm⁻¹.

A coordination number of six suggests a pseudooctahedral coordination sphere about the metal ions. Room temperature magnetic data (Table 1) are consistent with high-spin six-coordinate $M(pdc)_2^{2-}$ species. The observed magnetic moments are similar to those of $M(Hpdc)_2 \cdot 3H_2O$, $M(pdc) \cdot$ $3H_2O$, M(pdc) and $M_2(pdc)(Hpdc)_2 \cdot nH_2O$ (n = 0or 2) species: 5.25–4.54 μ_B for Co^{II}; 3.45–2.85 μ_B for Ni^{II}, and 1.93 μ_B for the latter Cu^{II} complex.^{7,9}

Electronic absorption spectra of the $Na_2[M(pdc)_2] \cdot nH_2O$ complexes are summarized in

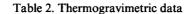
Table 1. The Cu^{II} complex has the single band expected for a six-coordinate d^9 species. Spectra of the Ni^{II} and Co^{II} complexes are also typical of sixcoordinate species; most of the absorption peaks have clearly defined shoulders which suggest distortion from octahedral symmetry. The spectra of the latter two complexes are very similar to those reported for the corresponding Ni^{II} and Co^{II} M(Hpdc)₂·3H₂O complexes.⁷

Several pdc²⁻ and Hpdc⁻ complexes have been studied via thermogravimetric analysis. The thermogram of $(Ph_4As)_2[UO_2(pdc)_2] \cdot 6H_2O$ showed that water was lost up to about 120°C in three steps (first one, then three, then two moles). The anhydrous salt then decomposed between 250 and 450°C in several steps, proceeding via an intermediate proposed to be UO₂(pdc-Ph)₂ after the loss of two moles of AsPh₃.¹⁶ Thermograms of the series $M(Hpdc)_2 \cdot nH_2O$ (M = Mn^{II}, Fe^{II}, Co^{II}, Ni^{II}, Cu^{II}, Zn^{II}; n = 0, 2, or 3) were reported by D'Ascenzo et al.¹⁸ In air, the hydrates Co(Hpdc)₂·3H₂O, Ni(Hpdc)₂·3H₂O and $Zn(Hpdc)_2 \cdot 2H_2O$ lost all their moles of water in a single step, while $Fe(Hpdc)_2 \cdot 2H_2O$ lost its water in two steps. All anhydrous compounds decomposed in two steps yielding the oxides Mn_3O_4 , Fe_2O_3 , Co₃O₄, NiO, CuO and ZnO. The order of stability was found to be Mn > Fe > Zn > Co > Ni >Cu, the reverse of the Irving-Williams sequence.

For the Na₂[M(pdc)₂] $\cdot nH_2O$ complexes studied here (Table 2 and Fig. 1), the three trihydrates (M = Zn^{II}, Ni^{II}, Cu^{II}) lose water in two steps (first two moles, then one mole). The dihydrates behave differently, with the Mn^{II} complex losing water in a single step and the Co^{II} complex losing it in two steps. There seems to be no correlation of the manner in which the water is lost and the appearance of the bands in the O—H stretching region of the aforementioned IR spectra. Decomposition of the anhydrous salts occurs in two distinct steps for Zn^{II}

Complex	Molar conductance ^{<i>a</i>} $\Lambda_{\rm M}$ (cm ² ohm ⁻¹ mol ⁻¹)	Magnetic moment ^b $\mu_{\rm B}$	Electronic absorption spectra ^c λ (nm) [ϵ (dm ³ mol ⁻¹ cm ⁻¹)]
$Na_2[Mn(pdc)_2] \cdot 2H_2O$	260	5.65	
$Na_2[Co(pdc)_2] \cdot 2H_2O$	261	5.18	459[20], 489sh, 528sh; 580[20]; 947[7], 989[7]
$Na_2[Ni(pdc)_2] \cdot 3H_2O$	221	3.25	363sh; ^{<i>a</i>} 616[10]; 923sh, 1021[32]
$Na_2[Cu(pdc)_2] \cdot 3H_2O$	213	1.88	774[43]
$Na_2[Zn(pdc)_2] \cdot 3H_2O$	232	diam.	

Table 1. Conductance, magnetic and spectral data


^a0.001 M in water.

^bAt 294 K.

^c 0.014–0.022 M in water.

^d Shoulder on charge-transfer band.

	Loss of water (%)		Residue (%)		
Complex	calc. (found) $-H_2O - 2H_2O - 3H_2O$			Composition	calc. (found)
$Na_2[Mn(pdc)_2] \cdot 2H_2O$	3.86	7.71		$Na_2CO_3 + Mn_3O_4$	39.02
	_	(7.9)			(38.9)
$Na_2[Co(pdc)_2] \cdot 2H_2O$	3.82	7.65		$Na_2CO_3 + Co_3O_4$	39.54
	(4.4)	(7.5)			(39.4)
$Na_2[Ni(pdc)_2] \cdot 3H_2O$	3.68	7.37	11.05	$Na_2CO_3 + NiO$	36.96
	_	(7.5)	(11.0)		(36.3)
$Na_2[Cu(pdc)_2] \cdot 3H_2O$	3.65	7.30	10.95	$Na_2CO_3 + CuO$	37.58
		(7.4)	(10.7)		(37.0)
$Na_2[Zn(pdc)_2] \cdot 3H_2O$	3.64	7.27	10.91	$Na_2CO_3 + ZnO$	37.81
		(7.2)	(11.1)		(37.3)

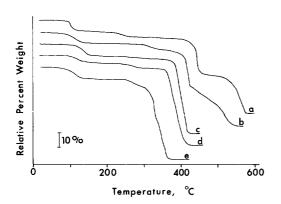


Fig. 1. Thermograms of $Na_2[M(pdc)_2] \cdot nH_2O$ complexes. (a) Zn, (b) Ni, (c) Mn, (d) Co, (e) Cu.

and Ni^{II}, in perhaps two overlapping steps for Cu^{II}, and apparently in a single step for Co^{II} and Mn^{II}. The order of stability is Zn > Ni > Mn > Co > Cu, with Ni being out of the position predicted by the reverse Irving–Williams sequence. The residues were identified based on total weight loss (Table 2) and by standard qualitative analysis tests to be mixtures of Na₂CO₃ and the respective oxides ZnO, CuO, NiO, Co₃O₄ and Mn₃O₄.

EXPERIMENTAL

Synthesis of Na₂[M(pdc)₂] complexes

The ligand pyridine-2,6-dicarboxylic acid, sodium hydroxide and the hydrated metal acetate salts were AR-grade chemicals and were used without further purification.

Solid NaOH (20 mmol) was dissolved in 75 cm³ of water and heated to near boiling in a 250 cm³ round-bottom flask. The ligand H_2pdc (20 mmol) was added with stirring until solution was complete.

The appropriate hydrated metal acetate (10 mmol), dissolved in 50 cm³ of hot water, was added to the basic ligand solution and the mixture was refluxed for 1-2 h. The resulting solution was reduced in volume to less than 50 cm³ by heating on a steam bath or using a rotary evaporator. Cooling in an ice bath induced crystallization of the crude product. Products were filtered, washed with *n*-butyl alcohol and dried in vacuum over P2O5. It was necessary to recrystallize the Ni^{II}, Cu^{II} and Zn^{II} complexes ; each compound was dissolved in cold water, filtered to remove unreacted ligand, then evaporated to near dryness to recover the product, which was then washed and dried as described above. Yields were 85-95% for the Co^{II} and Mn^{II} complexes and 50-75% for the others.

Found: C, 35.9; H, 2.1; N, 5.8. Calc. for $Na_2Mn(C_7H_3NO_4)_2 \cdot 2H_2O$: C, 36.0; H, 2.2; N, 6.0%. Colour: yellow. Found: C, 35.6; H, 2.1; N, 5.8. Calc. for $Na_2Co(C_7H_3NO_4)_2 \cdot 2H_2O$: C, 35.7; H, 2.1; N, 5.9%. Colour: grey. Found: C, 35.0; H, 2.6; N, 5.9. Calc. for $Na_2Ni(C_7H_3NO_4)_2 \cdot 3H_2O$: C, 34.4; H, 2.5; N, 5.7%. Colour: green. Found: C, 34.8; H, 2.9; N, 5.7. Calc. for $Na_2Cu(C_7H_3NO_4)_2 \cdot 3H_2O$: C, 34.0; H, 2.4; N, 5.7%. Colour: blue. Found: C, 34.7; H, 2.5; N, 5.8. Calc. for $Na_2Zn(C_7H_3NO_4)_2 \cdot 3H_2O$: C, 33.9; H, 2.4; N, 5.6%. Colour: white.

Physical and spectral measurements

Magnetic susceptibility measurements were carried out on solid samples by the Gouy method at 294 K and 5400 G. HgCo(SCN)₄ was used as calibrant. Diamagnetic corrections were made using Pascal's constants. The temperature-independent paramagnetism correction of 60×10^{-6} cgsu was used for the Cu^{II} complex. Molar conductance measurements were made on 0.001 M aqueous solutions using a Markson Electromark analyser. Potassium chloride solutions were used as standards.

IR spectra were obtained as KBr pellets in the range 4000–650 cm⁻¹ on a Beckman IR-8 spectrophotometer. Electronic absorption spectra were obtained as aqueous solutions (0.014–0.022 M) in the range 1300–340 nm on a Cary 14 spectrophotometer.

Thermogravimetric measurements were made in air on a home-constructed apparatus utilizing an iron-constantan thermocouple, ice-bath reference and a heating rate of $6^{\circ} \text{min}^{-1}$.

REFERENCES

- M. G. B. Drew, R. W. Matthews and R. A. Walton, J. Chem. Soc. A 1970, 1405.
- M. Biagini, A. Chiesi-Villa, C. Guastini and M. Nardelli, *Gazz. Chim. Ital.* 1972, 102, 1026.
- H. Gaw, W. R. Robinson and R. A. Walton, *Inorg. Nucl. Chem. Lett.* 1971, 7, 695.
- A. Chiesi-Villa, C. Guastini, A. Musatti and M. Nardelli, *Gazz.Chim. Ital.* 1972, 102, 226.
- P. P. Quaglieri, H. Loiseleur and G. Thomas, Acta Cryst. 1972, 28B, 2583.

- S. Ghosh, T. K. Banerjee and P. K. Ray, J. Ind. Chem. Soc. 1978, 55, 610.
- R. W. Matthews, A. D. Hamer, D. L. Hoof, D. G. Tisley and R. A. Walton, J. Chem. Soc., Dalton Trans. 1973, 1035.
- M. Biagini-Cingi, A. Chiesi-Villa, C. Guastini and M. Nardelli, *Gazz. Chim. Ital.* 1971, 101, 825.
- 9. D. L. Hoof and R. A. Walton, *Inorg. Chim. Acta* 1975, **12**, 71.
- D. L. Hoof, D. G. Tisley and R. A. Walton, J. Chem. Soc., Dalton Trans. 1973, 200.
- 11. A. Anagnostopoulos, J. Coord. Chem. 1975, 4, 231.
- S. K. Sengupta, S. K. Sahni and R. N. Kapoor, *Polyhedron* 1983, 2, 317.
- 13. P. E. Hoggard and H. H. Schmidtke, *Inorg. Chem.* 1973, 12, 1986.
- W. Furst, P. Gouzenh and Y. Jeannin, J. Coord. Chem. 1978, 8, 237.
- 15. J. Albertsson, Acta Chem. Scand. 1972, 26, 985, 1023.
- L. Baracco, G. Bombieri, S. Degetto, E. Forsellini, R. Graziani and G. Marangoni, *Inorg. Nucl. Chem. Lett.* 1974, 10, 1045.
- G. Marangoni, S. Dagetto, R. Graziani, G. Bombieri and E. Forsellini, J. Inorg. Nucl. Chem. 1974, 36, 1787.
- G. D'Ascenzo, A. Marino, M. Sabbatini and T. Bica, *Thermochim. Acta* 1978, 25, 325.
- 19. W. J. Gerry, Coord. Chem. Rev. 1971, 7, 81.