838 Communications Synthesis

Synthesis of Optically Active Chlorofluoroacetyl Chloride

Huguette Molines, Claude Wakselman*

CNRS-CERCOA, 2 à 8, rue Henri Dunant, F-94320 Thiais, France

Optically active chlorofluoroacetyl chloride (1) was needed for physico-chemical studies¹. We describe here a method avoiding resolution of the racemic acid 2 by dehydroabiethylamine². Racemic chlorofluoroacetic acid (2) has been obtained from chlorotrifluoroethylene (4) by hydrolysis of the ethyl ester $3a^{3.4}$. The free acid is difficult to prepare in good yield because of its volatility and extreme water solubility⁵.

Recently Middleton described a straightforward conversion of ethyl chlorofluoroacetate (3a) to chlorofluoroacetyl chloride (1) by a mixture of chlorosulfuric acid and phthaloyl chloride⁵.

 $\mathbf{c} \ \mathbf{R} = 2$ -octyl

Addition of an optically active alkoxide to chlorotrifluoroethylene should give two diastereoisomeric esters, which after separation, should be converted to chiral chlorofluoroacetyl chloride (1). In fact, *l*-menthol adds to chlorotrifluoroethylene to give compound 5b in 50% yield. However, all the attempts to obtain ester 3b failed, probably because the ester hydrolyses quickly to the acid 2 which remains in the water phase.

Thus, another approach was studied. Acetylation⁶ of *l*-menthol by chlorofluoroacetyl chloride (prepared according to Ref.⁵) gives two diastereoisomeric esters **3b** (yield 75%). Attempts to convert these esters to the acyl chloride 1 were unsuccessful. If *l*-octanol is used the same negative results are observed.

To solve the problem a third method was used. Primary and secondary amines are known to add to chlorotrifluoroethylene (4)^{7.8}. We found that addition of l- α -methylbenzylamine to chlorotrifluoroethylene gives compound 7; the intermediate 6 was not isolated: hydrofluoric acid is captured by the

chiral amine (if a tertiary amine or potassium fluoride is used to avoid the consumption of the chiral amine, the yield is not improved). Hydrolysis of 7 by refluxing with 10% sulfuric acid gives a 1:1 mixture of the two diastereoisomeric N- α -methylbenzyl- α -chloro- α -fluoroacetamides (8) (overall yield 46%). The two diastereoisomers have been separated by chromatography on silica gel. The slower moving isomer has been converted to optically active ethyl ester 3a by a mixture of ethanol and concentrated sulfuric acid. Optically active chlorofluoroacetyl chloride (1) is then obtained according to Middleton's procedure.

¹H-N.M.R. spectra (60 MHz, TMS) and ¹⁹F-N.M.R. spectra (56.4 MHz, CFCl₃) were recorded on a Varian EM360L spectrometer. I.R. spectra were obtained with a Perkin-Elmer 167 instrument. Melting points were taken on a Mettler FP61 apparatus. Rotatory powers were taken on a Perkin-Elmer 241 polarimeter.

N-α-Methylbenzyl-α-chloro-α-fluoroacetimidyl Fluoride (7):

(1)- α -Methylbenzylamine (5.15 ml, 0.04 mol), chlorotrifluoroethylene (4; 3.5 g, 0.03 mol) and dry diethyl ether (40 ml) in a 125 ml steel autoclave, are heated at 60 °C for 1 h, and then shaken at 20 °C for 12 h. The solid is filtered off and washed with diethyl ether (2 × 50 ml). After removal of the solvent from the filtrate under vacuum (20 torr) N- α -methylbenzyl- α -chloro- α -fluoroacetimidyl fluoride (7) is obtained: yield: 6.3 g (96%); oil.

¹H-N.M.R. (CDCl₃): $\delta = 1.4$ (d, 3H, ³ $J_{\rm HH} = 6$ Hz); 5 (q, 1H, ³ $J_{\rm HH} = 6$ Hz); 6.3 (dd, 1H, ² $J_{\rm HF} = 49$ Hz, ³ $J_{\rm HF} = 10$ Hz); 7.2 ppm (m, 6H).

¹⁹F-N.M.R. (CDCl₃): $\delta = -53$ (m, 6 lines); -143 ppm (m, 8 lines).

N-α-Methylbenzyl-α-chloro-α-fluoroacetamide (8):

The acetimidyl fluoride 7 (6.3 g) and 10% sulfuric acid (20 ml) are refluxed for 2 h, then cooled. Products are extracted with diethyl ether (3 \times 50 ml). The ether extract is washed with brine (100 ml) and dried with sodium sulfate. After evaporation of the solvent under vacuum (20 torr), a mixture of the two diastereoisomeric N- α -methylbenzyl- α -chloro- α -fluoroacetamides A and B (8) is obtained; yield: 3 g (46% based on 4).

¹⁹F-N.M.R. (CDCl₃): $\delta = -144$ ppm (d, ² $J_{\rm HF} = 51$ Hz), the chemical shift of isomer A is at 0.15 ppm higher field.

The two diastereoisomers (7 g) are separated by chromatography on silica gel (230–400 mesh ASTM, column: diameter 5 cm, height 20 cm) under pressure (0.2 bar) with ethyl acetate/ 40-60 °C pet-

roleum ether (12/88) as eluent. Between 0.1 g and 1 g of pure A first eluted and between 0.6 g and 1.2 g of pure B are obtained. The other fractions are a mixture of A and B which are again separated.

- Diastereoisomer A; m.p. 73°C:
- I.R. (CHCl₃): v = 3425, 2955, 1700 cm⁻¹.
- ¹H-N.M.R. (CDCl₃): δ = 1.57 (d, 3H, ³ $J_{\rm HH}$ = 7 Hz); 5.15 (m, 5 lines); 6.3 (d, 1H, ² $J_{\rm FH}$ = 51 Hz); 7.45 ppm (m, 5H).
- ¹⁹F-N.M.R. (CDCl₃): $\delta = -144$ ppm (d, ² $J_{\rm FH} = 51$ Hz).
- Diastereoisomer B; m.p. 50°C:
- I. R. (CHCl₃): v = 3425, 2950, 1700 cm⁻¹.
- ¹H-N.M.R. (CDCl₃): $\delta = 1.57$ (d. 3H, ³ $J_{HH} = 7$ Hz); 5.15 (m, 5 lines); 6.35 (d, 1H, ² $J_{FH} = 51$ Hz); 7.45 ppm (m, 5H).
- ¹⁹F-N.M.R. (CDCl₃): $\delta = -144$ ppm (d, ² $J_{\text{FH}} = 51$ Hz).

Ethyl Chlorofluoroacetate (3a):

A mixture of the diastereoisomer B of $N-\alpha$ -methylbenzyl- α -chloro- α -fluoroacetamide (8; 7.5 g, 0.035 mol) in absolute ethanol (9 ml) and concentrated sulfuric acid (1.5 ml) is refluxed for at least 30 h. The end of the reaction is controlled by ¹⁹F-N.M.R. (no signal of the acetamide). The mixture is cooled and bulb to bulb distilled (under 20 torr, the receiver cooled at $-78\,^{\circ}$ C). The condensate is distilled to give ethyl chlorofluoroacetate; yield: 3.5 g (71 %); b.p. $126-129\,^{\circ}$ C/atmospheric pressure; $[\alpha]_{365}^{25}$: $-79.7\,^{\circ}$ (c 1.55, CDCl₃) (Ref.⁴, b. p. $129-130\,^{\circ}$ C/atmospheric pressure).

Chlorofluoroacetyl Chloride (1):

Chlorofluoroacetyl chloride is prepared from (-)-ethyl chlorofluoroacetate (1 g) according to Middelton's procedure⁵; yield: 0.5 g (53%); b. p. $65-70\,^{\circ}\text{C/atmospheric pressure}$; $[\alpha]_{365}^{20}$: $-81.5\,^{\circ}$ (c 1.70, CDCl₃) (Ref.⁵, b. p. $69-70\,^{\circ}\text{C/atmospheric pressure}$).

Received: March 15, 1984

¹ C. Bordé, C. Salomon, Université Paris-Nord, personal communication.

² G. Bellucci, G. Berti, A. Borraccini, F. Macchia, *Tetrahedron* 25, 2979 (1969).

³ J.A. Young, P. Tarrant, J. Am. Chem. Soc. 71, 2432 (1949).

⁴ B. Englund, Org. Synth. Coll. Vol. IV, 184, 423 (1963).

⁵ W.J. Middleton, J. Org. Chem. **44**, 2291 (1979).

⁶ J.A. Reid, E.E. Turner, J. Chem. Soc. 1949, 3365.

⁷ R.L. Pruett, J. T. Barr, K. E. Rapp, C. T. Bahner, J. D. Gibson, R. H. Lafferty Jr., *J. Am. Chem. Soc.* **72**, 3646 (1950).

⁸ N.N. Yarovenko, M.A. Raksha, V.N. Shemanina, A.S. Vasilyeva, Zh. Obshch. Khim. 27, 2305 (1957); C.A. 52, 6176 (1958).

⁹ J. C. Bacon, C. W. Bradley, E. I. Heogberg, P. Tarrant, J. T. Cassaday, J. Am. Chem. Soc. 70, 2653 (1948).