Preparations and Structures of 3-Chloro-ONN-4'-methylazoxybenzene and 4-Methoxy-ONN-4'-methylazoxybenzene[†]

Jiro Yamamoto,* Takashi Tsuboi, Yasunori Sumi, Noriyasu Oda, and Keiichi Fukuyama^{††}
Department of Industrial Chemistry, Faculty of Engineering, Tottori University, Tottori 680
(Received March 26, 1987)

Synopsis. A treatment of 3-chloro-NNO-4'-methylazoxybenzene (1β) with CrO₃ in acetic acid gave 3-chloro-ONN-4'-methylazoxybenzene (1α) in good yield, whereas 4-methoxy-ONN-4'-methylazoxybenzene (2α) isomerized partially to 4-methoxy-NNO-4'-methylazoxybenzene (2β) under the same conditions. The structures of 1α and 2α have been determined by X-ray analysis.

The transformations of azoxybenzene into 4-hydroxyazobenzene1) and small amounts of 2-hydroxyazobenzene²⁾ were discovered by Wallach and Belli, respectivelly. A number of investigations on the Wallach rearrangement for various substituted azoxybenzenes have since followed. However, little has been studied regarding the Wallach rearrangement of unsymmetrically substituted azoxybenzenes or on the isomerization of the azoxybenzenes under the conditions of the Wallach rearrangement. Recently, the α, β -isomerization††† based on a migration of an azoxy-oxygen atom was found in the reaction of some unsymmetrically substituted azoxybenzenes with sulfuric acid. 6-8) In order to reveal the mechanism of the Wallach rearrangement through the behavior of unsymmetrically substituted azoxybenzenes, it is necessary to determine their structure unambiguously, i.e. the relative position of the oxygen atom on the azoxy group. Here, we report on the preparation of 3-chloro-ONN-4'-methylazoxybenzene (1α) and 4-methoxy-ONN-4'-methylazoxybenzene (2α) and the structures of 1α and 2α determined by X-ray crystallographic analysis.

Results and Discussion

It was shown that some β -isomers converted into α -isomers upon treating with CrO_3 in acetic acid [4-(phenyl-NNO-azoxy)beozoic acid, 9) 4-nitro-NNO-azoxybenzene¹⁰⁾]. When 1β was warmed with CrO_3 in acetic acid, an oxygen atom of it transfered to a nitrogen atom, binding with 4-tolyl group (β , α -isomerization). In the reaction of a mixture of 2α and 2β with CrO_3 under some conditions (i.e. by using four different starting mixtures in molar ratio and changing the reaction time, adding amounts of CrO_3 , and volume of AcOH), the preparation of pure 2α was unsuccessful. However, an azoxy-oxygen atom partialy transfered to

$$N=N$$
 $N=N$
 $N=N$

3-Chloro-**ONN**-4'-methylazoxybenzene 1α

3-Chloro-**NNO**-4'-methylazoxybenzene 1β

4-Methoxy-**ONN**-4'-methylazoxybenzene 2α

4-Methoxy-**NNO**-4'-methylazoxybenzene **2**β

a remote nitrogen atom from the 4-tolyl group in a α,β -ratio ($2\alpha:2\beta=0.5:1.0$) in each case (Table 1).

In order to separate the α and β -isomer of unsymmetrically substituted azoxybenzenes from each other, a fractional crystallization technique was spplied using ethanol [methyl 4-(phenylazoxy) benzoates, 9 4-methylazoxybenzenes,7) 4-phenylazoxybenzoic acid9)]. When a hot equimolar ethanol solution of 2α and 2β was allowed to stand at room temperature, deposited first crystals had the same isomeric ratio as the starting mixture. In an effective separation of 2α from a mixture of 2α and 2β , the deposited crystalline substance are filtered off from an ethanol solution at 50 °C. The structures of 1α and 2α , determined by the X-ray analyses, are shown in Fig.1. It could be guaranteed that both $\mathbf{1}\alpha$ (δ 1.97) and $\mathbf{2}\alpha$ (δ 1.98) had an azoxyoxygen atom on the nitrogen atom, binding the 4-tolyl group, respectively.

Experimental

Preparation of 3-Chloro-4'-methylazoxybenzene (3). p-Nitrosotoluene (4) (6.3 g, 52.0 mmol) was dissolved in an equal volume solution of acetic acid and ethanol (40 ml in each) with warming; was added an acetic acid solution of m-chloroaniline (4.6 g, 45.6 mmol) to it. After the reaction, the mixture was kept at 50 °C for 30 min, and then allowed to stand overnight. A dark brown precipitate was filtered and washed throughly with water. The precipitate was dissolved in ether and the ether solution was washed with water: 3% NaOH aq soln, 5% HCl aq soln, and water. After the ether solution was dried, crude 3 was obtained by recrystallization with ethanol (150 ml). Mp 106.0-107.0 °C. Methyl signal δ =2.05. 4-Methyl-4'-methoxyazobenzene (5) (86.5%) was also

[†]Reactivities of Azoxybenzenes. 17.

^{††}Present Address: Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560.

^{†††}Although the IUPAC nomenclature on unsymmetrically substituted azoxybenzenes is not used the terms of α and β , we use these signs in this paper for convenience.

Table 1.	The Reaction of the Mixture of 4-Methoxy-ONN- (2α) and 4-Methoxy-NNO-
	4'-methylazoxybenzene (2B) with CrO ₃

Starting $CH_3 \stackrel{\frown}{\longrightarrow} N=N \stackrel{\frown}{\longleftarrow} OCH_3$	Rea	action condi	tion ^{a)}	$\begin{array}{c} \text{Product}^{\text{b})} \\ \text{CH}_{3} & \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\$	
Ŏ	Time	CrO_3	AcOH	ŏ	
g (mmol)	h	g (mmol)	ml	g (%)	
2.51 (10.36)	3.0	2.0 (20.0)	100	2.00 (80.0)	
$(\alpha: \beta = 0.98: 1.00)$				$(\alpha: \beta = 0.50: 1.00)$	
3.29 (13.58)	4.0	3.5 (35.0)	100	2.60 (79.1)	
$(\alpha : \beta = 0.40 : 1.00)$				$(\alpha: \beta = 0.50: 1.00)$	
3.90 (16.10)	4.5	2.5 (25.0)	100	3.29 (84.4)	
$(\alpha : \beta = 0.66 : 1.00)$, ,		$(\alpha: \beta = 0.50: 1.00)$	
2.60 (10.73)	6.0	6.0 (60.0)	150	0.90 (34.6)	
$(\alpha : \beta = 0.50 : 1.00)$, ,		$(\alpha: \beta = 0.50: 1.00)$	

a) Reaction temperature: 60 °C. b) In high reaction temperature, benzene insolubles were found.

Fig. 1. Stereoscopic views of (a) 1α and (b) 2α .

prepared in a reaction of 4 with p-anisidine: mp 111.0 °C (lit, 11) 110.0—111.0 °C) δ =2.07.

Preparation of 3-Chloro-ONN-4'-methylazoxybenzene (1 α). An acetic acid solution (500 ml) of 3 (5.0 g, 24.2 mmol) was kept at around 65 °C with 30% H₂O₂ (50 ml). When the orange-reddish solution changed to yellow, the reaction mixture was poured into water. The precipitate was filtered and washed with water until the smell of acetic acid disappeared. An equimolar mixture of 1α ($\delta=1.97$) and 4methyl-**ONN**-3'-chloroazoxybenzene (1β) (δ =2.09) was obtained (5.3 g, 97.1%) mp 76.5—77.0°C. The mixture (5.0 g, 22.3 mmol) was kept in the range 30—40°C in acetic acid and CrO₃ (5.1 g, 51.0 mmol) was added in three portions during 30 minutes. After the reaction mixture was warmed in the range 55-60°C for 3 h and allowed to stand over night, it was poured into cold water and filtered. 1α was thoroughly washed with water and dried (4.25 g, 85.0%). The oxidation of 5 with H2O2 was carried out by the same procedure and an equimolar mixture (85.0%) of 2α (δ =1.98) and 2β (δ =2.08) was obtained. An ethanol solution (80 ml) of the mixture was kept in the range 60-70 °C. When the temperature of the solution dropped to 50 °C, the deposited crystals were filtered and dried (5.1 g, 81.0%), $(2\alpha : 2\beta = 5.67 : 1.00)$. The same procedure was applied for a mixture (5.1 g, 24.6 mmol) using ethanol (100 ml) again. After being worked up, pure 2α (2.86 g, 55.0%) was obtained mp 110.5—111.0 °C (δ =1.98).

Crystallographic Measurements. The diffraction data of the crystals of 1α and 2α were measured at room temperature on a microcomputer-controlled four-circle diffractometer. 12) The crystal data are as follows: $l\alpha$; $C_{13}H_{11}N_2OCl$, M=246.7, monoclinic, space group $P2_1/n$, a=12.133(5), b=12.805(5), $c=7.738(4) \text{ Å}, \beta=93.69(5)^{\circ}, V=1199.7 \text{ Å}^3, Z=4, D_c=1.37 \text{ g cm}^3.$ **2a**: $C_{14}H_{14}N_2O_2$, M=242.3 monoclinic, space group C_2 , a=25.485(7), b=3.986(3), c=13.428(5) Å, $\beta=116.42(5)^\circ$, V=1221.6 Å 3 Z=4, D_c =1.32 g cm 3 . The intensities were measured up to $2\theta=120^{\circ}$ by a $\theta=2\theta$ scan technique using Nifiltered Cu $K\alpha$ radiation. The reflections with $F>2\sigma_F$ were used for subsequent caluculations. The numbers of measured and significant reflections were 1784 and 1368, respectivelyely, for 1α , and 1019 and 778, respectively for 2α . Periodically monitored reflections showed no significant change in intensity. The intensities were corrected for the Lorenz and polarization factors.

Structure Determination. The structure of 1α was solved by the direct method.¹³⁾ Since an attempt to solve the structure of 2α by a direct method was unsuccessful, the vector search method¹⁴⁾ was applied; the parameters of the orientation and the translation of azoxybenzene were deter-

Table 2. Final Atomic Coordinates of 1α with Their Estimated Standard Deviations in Parentheses

	x	у	z
C (1)	0.0376(3)	0.6938(3)	0.7470(5)
C(2)	0.0106(4)	0.7969(4)	0.7311(6)
C(3)	-0.0328(4)	0.8482(4)	0.8703(6)
C(4)	-0.0480(4)	0.7939(4)	1.0231(5)
C(5)	-0.0205(4)	0.6892(4)	1.0340(5)
C(6)	0.0232(4)	0.6379(3)	0.8960(6)
C(7)	0.1671(3)	0.4937(3)	0.4906(5)
C(8)	0.1934(4)	0.3940(4)	0.5428(6)
C(9)	0.2456(4)	0.3247(4)	0.4367(6)
C(10)	0.2734(4)	0.3586(4)	0.2743(6)
C(11)	0.2482(4)	0.4576(4)	0.2242(6)
C(12)	0.1939(4)	0.5281(3)	0.3249(6)
C(13)	-0.0951(5)	0.8497(4)	1.1767(7)
N(1)	0.0846(3)	0.6421(3)	0.5970(4)
N(2)	0.1162(3)	0.5496(3)	0.6216(4)
O(1)	0.0878(3)	0.6949(3)	0.4598(4)
Cl	0.2845(1)	0.4998(1)	0.0214(2)

Table 3. Final Atomic Coordinates of 2α with Their Estimated Standard Deviations in Parentheses

	x	у	z
C(1)	0.1655(4)	0.0104(31)	0.2794(7)
C(2)	0.1083(4)	0.1102(29)	0.2273(6)
C(3)	0.0709(4)	0.0563(30)	0.2778(7)
C(4)	0.0924(4)	-0.0963(29)	0.3816(7)
C(5)	0.1511(4)	-0.1950(29)	0.4326(7)
C(6)	0.1879(4)	-0.1408(31)	0.3826(7)
C(7)	0.2948(4)	0.0000(29)	0.2299(6)
C(8)	0.3480(4)	-0.1419(31)	0.2984(7)
C(9)	0.3949(4)	-0.1292(32)	0.2718(7)
C(10)	0.3876(4)	0.0319(29)	0.1742(7)
C(11)	0.3339(4)	0.1754(29)	0.1051(7)
C(12)	0.2873(4)	0.1552(27)	0.1320(7)
C(13)	0.0512(4)	-0.1609(34)	0.4356(8)
C(14)	0.4310(4)	0.2096(40)	0.0564(7)
N(1)	0.2024(3)	0.0607(24)	0.2242(5)
N(2)	0.2548(3)	-0.0402(25)	0.2756(5)
O(1)	0.1790(3)	0.2105(26)	0.1308(5)
O(2)	0.4354(3)	0.0413(22)	0.1549(5)

mincd by the program RICS. 15) The renaining nonhydrogen atoms were located in a successive Fourier synthesis. Positional and anistropic temperature factors for 1α and 2α were refined by a block diogonal least-squares method. 16) All hydrogen atoms of 1α were located in the difference Fourier synthesis and included in the subsequent refinement. The positions of the hydrogen atoms of 2α , except those of the methyl group, were caluculated geometrically and included in the refinement. The isotopic temperature factors of these hydrogen atoms of 2α were fixed to those of the atoms to which they were bonded. The weighting scheme used in the final cycle of the refinement for 1α was w=1.0 for $F_0 \le 18$ and $w=[1.0+0.25 (F_0-18)]^{-1}$, for $F_0 > 18$ and that for 2α was w=1.0 for $F_0 \le 30$ and w= $[1.0+0.2(F_0-30)]^{-1}$ for $F_0 > 30$. The final R values are 0.071 and 0.083 for 1α and 2α , respectivelly. The final atomic parameters are given in Tables 2 and 3.¹⁷⁾ The atomic scattering factors were taken from the International Tables for X-Ray Crystallography. 18)

We thank Shigeo Fujii and Yoshikuni Takiyama for the assistance of X-ray analysis.

References

- 1) O. Wallach and L. Belli, Ber., 13, 525 (1880).
- 2) E. Bamberger, *Ber.*, **35**, 1614 (1900).
- 3) E. Buncel, "Mechanism of Molecular Migrations," ed by B. S. Thyagarajan, Interscience, New York (1968), Vol. 1 p. 61.
- 4) E.Buncel, and R. B. Cox, "The chemistry of hydrazo, azo and azoxy groups" ed by S. Patti, Interscience, London (1975), Part 2, p. 808.
- 5) H. J. Shine "Aromatic rearrangements," Elsivier Amsterdam (1976), p. 272.
- 6) J. Yamamoto, T. Sakamoto, K. Kusunoki, M. Umezu, and T. Matsuura, *Nippon Kagaku Kaishi*, **1977**, 66.
- 7) J. Yamamoto, H. Aimi, Y. Masuda, T. Sumida, M. Umezu, and T. Matsuura, J. Chem. Soc., Perkin Trans., 2, 1982, 1565.
- 8) J. Yamamoto, N. Tanaka, M. Yamamoto, T. Nakagawa, and H. Aimi, Nippon Kagaku Kaishi, 1987, 851.
- 9) A. Angeli and B. Valori, Atti Accad Lincei, 22, I, 132 (1912); Chem. Abstr., 7, 2223 (1913).
- 10) A. Angeli and B. Valori, Atti Accad. Lincei, 21, I, 729 (1911); Chem. Abstr., 6, 2747 (1912).
- 11) H. Wieland, Ber., 48, 1107 (1915).
- 12) Y. Katsube, J. Cryst. Soc. Jpn., 24, 132 (1982).
- 13) G. Germain, P. Main, and M. M. Woolfson, Acta. Crystallgr., Sect. A, 27, 368 (1971).
- 14) R. Huber, "Crystallographic Computing," ed by F. R. Ahmed. Munksgaard, Copenhagen (1970), p. 96.
- 15) I. Tanaka, personal communication.
- 16) T. Ashida, HBLS-V, The Universal Crystallographic Computing System, p. 55. The Computation Center, Osaka University 1973.
- 17) The Coordinates of hydrogen atoms, the anisotropic temperature, bond lengths and angles, and the list of observed and caluculated structure factors ($\times 10$) for 1α and 2α are deposited as Document No. 8764 at the Office of the Editor of Bull. Chem. Soc. Jpn.
- 18) "International Tables for X-Ray Crystallography," Brimingham, Kynoch Press (1974), Vol. IV, p. 71.