(*Anal.* Caled for $C_{34}H_{46}O_4$: C, 78.72; H, 8.94. Found: C, 78.14; H, 8.98); this on reduction gave cholestane-3 β -ol-7,11-dione benzoate,¹ m.p. and mixed m.p. with previous sample 197–199°.

Converse Memorial Laboratory Harvard University Cambridge 38, Massachusetts Cambridge 38, Massachusette Cambridge 38, Mas

RECEIVED JULY 16, 1951

THE PREPARATION OF TERMINALLY UNSATURATED PERFLUORO OLEFINS BY THE DECOMPOSITION OF THE SALTS OF PERFLUORO ACIDS

Sir:

We have found that salts of the perfluorocarboxylic acids can be decarboxylated to give the 1-perfluoroölefins in good yield. This reaction appears to be unique with the salts of the perfluoro acids.

 $C_nF_{2n+1}CF_2CF_2CO_2M \longrightarrow C_nF_{2n+1}CF = CF_2 + CO_2 + MF$

The sodium salts have been found to give the most satisfactory yields.

The salts were prepared by neutralizing an aqueous solution of the perfluoro acid with sodium hydroxide and were dried by heating in air at 100° for 8 hours. The decarboxylation reaction was carried out in a distilling flask heated in a furnace. Gaseous products were collected in traps cooled by liquid air or Dry Ice-acetone. Heat was gradually applied to the flask. Decomposition occurred at a controllable rate at a furnace temperature of 200–300°. The reactions were carried out at atmospheric pressure except where the product olefin boiled above room temperature, as in the case of C₉F₁₈-1 from sodium perfluorocaprate, when reduced pressure was used.

For example, in the pyrolysis of sodium perfluorobutyrate decomposition occurred at $245-253^{\circ}$. From 723 g. of salt, 590 g. of product was collected in the cold trap. Infrared analysis indicated this to consist of 50 mole % CO₂ and 50 mole % C₃F₆. After passage of the gases through aqueous base, 455 g. of C₃F₆ (99% yield) boiling at -29° was obtained. Terminally unsaturated perfluoro olefins containing 2, 3, 4, 5 and 9 carbon atoms, prepared by this procedure, are described in the table. A more detailed report of the results will be published.

CENTRAL RESEARCH DEPARTMENT LYLE J. HALS MINNESOTA MINING & MANUFACTURING COMPANY THOMAS S. REID

St. Paul, Minnesota George H. Smith, Jr. Received July 2, 1951

CORRELATION OF A SYNTHETIC STEROID WITH AN INTERMEDIATE TO CORTISONE

Sir:

The method reported for the production of 11-keto^{1,2} and 11 β -hydroxy steroids² from 9,11-ethylenes is clearly inapplicable to natural (A/B *trans*) sterols but might, we thought, be useful in total synthesis if it could be shown applicable to compounds with shortened side chains.

We hence converted methyl 3α -acetoxy- $\Delta^{9(11)}$ etiocholanate³ (I) prepared from a sample of 3α hydroxy-11-ketoetiocholanic acid kindly supplied by Dr. Max Tishler (Merck & Co.), with perbenzoic acid to the oxide, needles from methanol, m.p. 166.9-167.4°, $[\alpha]_{D}$ +66.4° Chf (*Anal.* Calcd. for C₂₃-H₃₄O₅: C, 70.74; H, 8.77. Found: C, 70.47; H, 8.74), and by methoxide-catalyzed methanolysis obtained the 3α -hydroxy oxide II, m.p. 149.8-151.0°, $[\alpha]_D$ +48.9° Chf (Anal. Calcd. for C₂₁- $H_{32}O_4$: C, 72.38; H, 9.26. Found: C, 72.20; H, 9.50). Oxidation with sodium dichromate in glacial acetic acid furnished the 3-ketone, m.p. $128-130^{\circ}$ and $138.0-139.8^{\circ}$, $[\alpha]_{\rm D} + 29.4^{\circ}$ Chf (Anal. Caled. for $C_{21}H_{30}O_4$: C, 72.80; H, 8.73. Found: C, 72.62; H, 8.85), and chromic anhydride in aqueous acetic acid converted the keto oxide to methyl 3β -hydroxy- 3α , 9α -oxido-11-ketoetiocholanate (III), m.p. 174.6–176.0°, $[\alpha]_{\rm D}$ +134.6° Chf, $\lambda_{\rm Max}^{\rm Chf}$ 2.92, 5.83, 5.86 μ (Anal. Calcd. for C₂₁H₃₀O₅: C, 69.58; H, 8.34. Found: C, 69.30; H, 8.44); acetate (acetic anhydride-boron fluoride), m.p. 123.8-125.3°, $[\alpha]_{\rm D}$ +135° Chf (*Anal.* Caled. for C₂₃H₃₂O₆: C, 68.29; H, 7.97. Found: C, 68.01; H, 8.09). Cleavage of III with dry hydrogen bromide gave the known methyl 3,11-diketo- 12α -bromoethiocholanate⁴ (IV), which was debrominated⁴ to methyl 3,11-diketoetiocholanate⁴ (V) m.p. 183.8–186.2°, $[\alpha]_D$ +92.4° Chf; mixed m.p. determination with an authentic sample and

	Molecular wt.		B.p., °C.	Fluori	An	al. Carbon, %	
Compound	Found	Calcd.	730–745 mm.	Caled.	Found	Calcd.	Found
$CF_2 = CF_2$	99	100	-76 to -75				
$CF_3CF=CF_2$	150	150	-29		• •		
CF ₃ CF ₂ CF=CF ₂	201	200	-2 to -1	76.0	75.9	24.0	24.2
$CF_3(CF_2)_2CF=CF_2$	250	250	29 to 30	76.0	75.9	24.0	24.1
$CF_3(CF_2)_6CF = CF_2$		450	123 to 124	76.0	75.5	24.0	24.0

TABLE I TERMINAL PERFLUORO OLEFINS

The olefins were identified by molecular weight, boiling point, infrared spectra, the preparation of chemical derivatives, or oxidation to perfluoro acids containing one less carbon atom than the olefin. They have in common an infrared absorption peak at 1795 cm.⁻¹ which is characteristic of the double bond in $C_nF_{2n+1}CF=CF_2$. comparison of infrared spectra and rotations indicated identity.

(1) L. F. Fieser, H. Heymann and S. Rajagopalan, THIS JOURNAL, 72, 2307 (1950).

(2) H. Heymann and L. F. Fieser, *ibid.*, **73**, in press (1951).
(3) A. Lardon and T. Reichstein, *Helv. Chim. Acia*, **23**, 1420 (1945).

(4) A. Lardon and T. Reichstein, ibid., 26, 705 (1943).