DOI: 10.1002/ejoc.201100017

Chemoselective Reduction of Isatin-Derived Electron-Deficient Alkenes Using Alkylphosphanes as Reduction Reagents

Shu-Hua Cao,^[a] Xiu-Chun Zhang,^[a] Yin Wei,^{*[b]} and Min Shi^{*[a,b]}

Keywords: Reduction / Alkenes / Chemoselectivity / Phosphanes

Under mild reaction conditions, the C=C double bond in isatin-derived electron-deficient alkenes has been exclusively reduced in the presence of alkylphosphanes and water

to afford the corresponding reduction products in good to excellent yields. A plausible mechanism is proposed on the basis of deuterium-labeling experiments.

Introduction

Organophosphorus compounds have proven to be particularly versatile as catalysts or reagents in many types of organic reactions, and phosphanes in particular have been widely used as nucleophilic organocatalysts in recent decades.^[1] One interesting organocatalytic reaction is the hydration and hydroalkoxylation of activated olefins catalyzed by nucleophilic phosphanes.^[2] However, the use of phosphanes as reducing agents accompanied by a proton transfer is rare. To the best of our knowledge, the Staudinger reaction is the first report of the reduction of azides to amines promoted by PPh₃/H₂O.^[3] In 2006, our group reported an interesting reduction of activated carbonyl groups promoted by alkylphosphanes, which is a convenient method for producing the corresponding α -hydroxylated derivatives (Scheme 1).^[4] Subsequently, the scope of this reduction process was extended to other compounds including activated carbonyl groups such as 1-aryl-2,2,2-trifluoroethanones,^[5] and the reductive coupling of acyl cyanides was also achieved (Scheme 1).^[6] On the basis of our previous work, we have attempted to extend the range of substrates used in the reduction reaction promoted by alkylphosphanes. Thus, we investigated the reduction reactions of activated alkenes such as isatin-derived electron-deficient alkenes due to their easy preparation and various applications in the synthesis of natural products, drugs, and related analogues.^[7] Herein, we report an interesting, highly chemoselective reduction reaction of isatin-derived electron-deficient alkenes promoted by alkylphosphanes.

- [b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China E-mail: weiyin@mail.sioc.ac.cn
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100017.

Scheme 1. Reduction reactions promoted by alkylphosphanes.

Results and Discussion

An initial examination was carried out by treating (E)-1benzyl-3-(2-oxopropylidene)indolin-2-one (1a) with PBu₃ in toluene at 80 °C. We observed that the C=C double bond was exclusively reduced to afford the corresponding reduction product 1-benzyl-3-(2-oxopropyl)indolin-2-one (2a) in only 18% yield (Table 1, Entry 1). We assumed that an additional proton source should be added to improve the yield of the desired product. Thus, water was chosen as an additive, which indeed increased the yield of 2a to >99% (Table 1, Entry 2). Decreasing the amount of phosphane reduced the yield of the desired product (Table 1, Entries 3 and 4). Lowering the reaction temperature to room temperature and increasing the amount of PBu₃ to 1.2 equiv. still produced the corresponding product 2a in good yield (86%, Table 1, Entry 5). With PMe₃ as promoter, this reduction reaction also proceeded smoothly to give the corresponding product 2a in 86% yield (Table 1, Entry 6). We also investigated this reaction in tetrahydrofuran (THF) with PBu₃ and PMe₃ as promoters, because THF was a good solvent in our previous studies. It turned out that we could obtain the corresponding product 2a almost quantitatively when PMe₃ was used as promoter in the presence of THF and water (Table 1, Entry 7). With PMe₃ as promoter, we screened other solvents (Table 1, Entries 9-11), which demonstrated that THF was the best solvent. This reduction reaction also proceeded smoothly by using other

 [[]a] Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Fax: +86-21-64166128 E-mail: mshi@mail.sioc.ac.cn

phosphanes with at least one alkyl substituent, such as PPhMe₂ or PPh₂Me, to afford the corresponding product **2a** in moderate to good yields (Table 1, Entries 12 and 13). However, a sterically hindered alkylphosphane such as $PtBu_3$ and the aromatic phosphane PPh₃ did not promote this reaction under the same reaction conditions (Table 1, Entries 14 and 15).

Table 1. Reduction of 1a under various conditions.^[a]

$Me \xrightarrow{N} 0 \xrightarrow{PR_3 (x \text{ equiv.}), \text{ temp.}} 0 \xrightarrow{N} 0$ $Ia \xrightarrow{N} 0 \xrightarrow{PR_3 (x \text{ equiv.}), \text{ temp.}} 2a \xrightarrow{N} 0$					
Entry	PR ₃	X	Solvent	<i>T</i> [°C]	Yield [%] ^[b]
1 ^[c]	PBu ₃	1.0	toluene	80	18
2	PBu ₃	1.0	toluene	80	>99
3	PBu ₃	0.2	toluene	80	18
4	PBu ₃	0.5	toluene	80	48
5	PBu ₃	1.2	toluene	r.t.	86
6	PMe ₃	1.2	toluene	r.t.	86
7	PMe_3	1.2	THF	r.t.	>99
8	PBu ₃	1.2	THF	r.t.	>84
9	PMe_3	1.2	CH ₃ CN	r.t.	54
10	PMe_3	1.2	DCM	r.t.	99
11	PMe_3	1.2	Et_2O	r.t.	43
12	PPh ₂ Me	1.2	THF	r.t.	39
13	PPhMe ₂	1.2	THF	r.t.	86
14	$PtBu_3$	1.2	THF	r.t.	_[d]
15	PPh ₃	1.2	THF	r.t.	_[d]

[a] Reaction conditions: **1a** (0.10 mmol), solvent (1.0 mL), 24 h. [b] Isolated yield. [c] H_2O was not added to the reaction mixture. [d] The desired product was not detected.

We noticed that the addition of water significantly increased the yield of the desired product in this reduction reaction (Table 1, Entry 2). We thus carried out a series of reactions under the standard conditions with various amounts of water. The results are summarized in Table 2. The addition of 2.5 equiv. of water to the reaction mixture led to the formation of the corresponding product 2a in low yield (39%, Table 2, Entry 1). Increasing the amount of water to 5 and 10 equiv. improved the yield of 2a to 86 and 99%, respectively (Table 2, Entries 2 and 3). Continually increasing the amount of water up to 55.6 equiv. still afforded 2a in excellent yield (Table 2, Entry 4). For substrate 1a, at least 10 equiv. of water was required to maximize this reduction reaction. For substrates that react slowly, more than 10 equiv. of water would be required for this reduction reaction. To guarantee complete conversion of the reactant, we chose to add 55.6 equiv. of water in the following experiments.

Having identified the optimal reaction conditions, we next set out to examine the scope and limitations of this reduction reaction with PMe_3 using various isatin derivatives 1. The results are summarized in Table 3. Substrate 1b having a methyl group at the 5-position of the benzene ring of *N*-benzylisatin gave the corresponding product 2b in a

Table 2. Screening of water loading in the reduction reaction.^[a]

[a] Reaction conditions: 1a (0.10 mmol), PMe₃ (0.12 mmol), THF (1.0 mL), H_2O , r.t., 24 h. [b] Isolated yield.

lower yield (52%, Table 3, Entry 1). Varying the R² substituent from methyl to phenyl or ethyl afforded the corresponding products 2c-2e in high yields (Table 3, Entries 2-4). Irrespective of whether electron-withdrawing or -donating groups were present at the 4-, 5-, or 6-position of the *N*-benzylisatins 1, the reactions proceeded smoothly to give the corresponding products 2f-2l in good to excellent yields when R^2 was an OEt group and R^3 a Bn group (Table 3, Entries 5-11). Substrates with a substituent at the 7-position of the N-benzylisatins ($R^2 = OEt$ and $R^1 = Bn$) furnished the corresponding products 2m and 2n in low to moderate yields (Table 3, Entries 12 and 13). Varying the *N*-substituent in substrates 1 ($R^2 = OEt$ and $R^1 = H$) afforded the corresponding products 20-2r in moderate to excellent yields (Table 3, Entries 14-17). We also used this reduction system in reactions with other α,β -unsaturated compounds (Scheme 2). Unfortunately, no reduction took place.

To clarify the reaction mechanism, several deuteriumlabeling experiments were conducted, and the results are summarized in Scheme 3. The first experiment was carried out with D₂O under the standard reaction conditions to afford the crude product 2a in 99% yield with 56, 85, 85, and 62% D content^[8] at the D¹, D², D^{2'}, and D³ positions, respectively [Scheme 3, Equation (1)]. After silica gel column chromatography, the D contents of the isolated product 2a were measured again, and it was found that the D contents at the D^1 , D^2 , $D^{2'}$, and D^3 positions were 49, 77, 77, and 10%, respectively. This indicates that water is the proton source for this reduction reaction and that the workup procedure leads to changes in the D content, especially at the D³ position. Performing the same reaction with a different workup method, that is, by recrystallization in THF/D₂O, gave **2a** in 90% yield with 65, 63, 63, and 36%D content at the D^1 , D^2 , $D^{2'}$, and D^3 positions, respectively [Scheme 3, Equation (2)]. The recrystallization was conducted in THF/D₂O, which led to a higher amount of D at C-1 than in the crude product. The recrystallization procedure was rather long (5 d) and H/D exchange occurred more easily at the D^2 , $D^{2'}$, and D^3 positions, and thus the amount of D on C-2 and C-3 is lower than in the crude product.

Table 3. Scope of the reduction reactions promoted by PMe₃.^[a]

[a] Reaction conditions: 1 (0.10 mmol), PMe_3 (0.12 mmol), THF (1.0 mL), r.t., 24 h. [b] Isolated yield.

Scheme 2. Attempted reduction reactions of α , β -unsaturated compounds.

Scheme 3. Deuterium-labeling experiments.

Subsequently, several control experiments were carried out, and the results are summarized in Scheme 4.

Scheme 4. Control experiments.

The use of $P(CD_3)_3^{[9]}$ and water afforded product 2a in 99% isolated yield. However, no H/D exchange was observed [Scheme 4, Equation (1)], which suggests that the protons are not derived from $P(CD_3)_3$. Without PMe₃, no reaction occurred, and no H/D exchange was observed either [Scheme 4, Equation (2)]. In the presence of D_2O_2 , H/D exchange only took place at the D^3 position of the crude product 2a [91% D content, Scheme 4, Equation (3)], which indicates that H/D exchange occurs easily at the D^3 position and may account for why the amount of D at D^3 always varies during workup. In the presence of PMe₃ and D_2O_2 , a similar result was obtained (the D content at the D^3 position was 63%, see the Supporting Information);^[8] the isolated product 2a purified by silica gel column chromatography gave similar results (see the Supporting Information).

Based on the results of the deuterium-labeling experiment and the mechanism previously proposed in the literature,^[2–4] we suggest a mechanism for this reduction reaction (Scheme 5). Initially, Michael addition of PMe₃ to compound 1 forms enolate A, which abstracts a proton from water to generate intermediate **B**. As a result of keto/enol tautomerization, another intermediate C could be formed at this stage. These intermediates could continue to exchange protons with water to furnish intermediate D, which gives the complex \mathbf{F} via transition state \mathbf{E} .^[10] The proton is quickly transferred to the anionic moiety in complex F to furnish the corresponding product 2 and to release the phosphane oxide (identified by ³¹P NMR spectroscopy, see the Supporting Information). Strongly basic reaction intermediates such as A and several keto/enol tautomerizations exist in the reaction process, and this might be a reason for the H/D exchange observed at all the "acidic" positions of the final product in deuterium-labeling experiments carried out in D_2O .

Scheme 5. Plausible mechanism for the reduction reaction.

Conclusions

We have demonstrated a novel, highly chemoselective reduction of the C=C double bond in isatin-derived electrondeficient alkenes promoted by alkylphosphanes with water under mild reaction conditions to afford the products in good to excellent yields. Moreover, a plausible mechanism is proposed on the basis of deuterium labeling and control experiments as well as DFT calculations. Research is in progress to elucidate further mechanistic details of these reactions and to understand their scope and limitations.

Experimental Section

General Procedure for the Reduction of Isatin-Derived Electron-Deficient Alkenes 1: In a flame-dried Schlenk flask was placed 1 (0.10 mmol) under argon, and then anhydrous THF (1.0 mL) and H₂O (100 μ L) were added slowly. PMe₃ (1.0 M in THF, 0.12 mmol) was then added quickly. The reaction mixture was stirred at room temperature for 24 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel flash column chromatography (pentane/EtOAc, 10:1) to give the corresponding product 2.

Compound 2a: White solid (28 mg, 99% yield); m.p. 119–121 °C. IR (CH₂Cl₂): $\tilde{v} = 2922$, 2852, 1691, 1612, 1486, 1463, 1416, 1365, 1343, 1309, 1194, 1180, 1169, 1080, 748, 733, 696 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 2.23$ (s, 3 H, CH₃), 2.92 (dd, J = 8.4, 18.4 Hz, 1 H, CH₂), 3.32 (dd, J = 3.2, 18.4 Hz, 1 H, CH₂), 3.95 (dd, J = 3.2, 8.4 Hz, 1 H, CH), 4.91 (d, J = 15.2 Hz, 1 H, CH₂), 4.96 (d, J = 15.2 Hz, 1 H, CH₂), 6.71 (d, J = 8.0 Hz, 1 H, Ar), 6.95–6.99 (m, 1 H, Ar), 7.13–7.19 (m, 2 H, Ar), 7.21–7.35 (m, 5 H, Ar) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 29.9$, 41.0, 43.8, 44.4, 109.0, 122.5, 124.1, 127.2, 127.5, 128.0, 128.8, 135.8, 143.3, 177.5, 205.2 ppm. MS (EI): m/z (%) = 279 (18.8) [M]⁺, 236 (47.4), 158 (25.0), 91 (100.0), 77 (9.1), 65 (16.3), 43 (12.3). HRMS (EI): calcd. for C₁₈H₁₇NO₂: 279.1259; found 279.1258.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectroscopic and analytic data for compounds **1** and **2** and deuterium-labeling experiments.

Acknowledgments

We thank the Shanghai Municipal Committee of Science and Technology (08dj1400100-2), the National Basic Research Program of China (973-2009CB825300), the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (21072206, 20872162, 20672127, 20732008, 20821002, and 20702013) for financial support.

- For selected reviews on phosphane-catalyzed reactions, see: a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535–544;
 b) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035–1050; c) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008, 37, 1140–1152; d) D. S. Glueck, Chem. Eur. J. 2008, 14, 7108–7117; e) B. J. Cowen, S. J. Miller, Chem. Soc. Rev. 2009, 38, 3102–3116; f) A. Marinetti, A. Voituriez, Synlett 2010, 174;
 g) Y. Wei, M. Shi, Acc. Chem. Res. 2010, 43, 1005–1018; for other related reactions, see: h) X.-F. Zhu, C. E. Henry, J. Wang, T. Dudding, O. Kwon, Org. Lett. 2005, 7, 1387–1390; i) X.-F. Zhu, A.-P. Schaffner, R. C. Li, O. Kwon, Org. Lett. 2005, 7, 2977–2980; j) X.-F. Zhu, C. E. Henry, O. Kwon, Tetrahedron 2005, 61, 6276–6282; l) X.-F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 2003, 125, 4716–4717.
- [2] I. C. Stewart, R. G. Bergman, D. F. Toste, J. Am. Chem. Soc. 2003, 125, 8696–8697.
- [3] a) H. Staudinger, J. Meyer, *Helv. Chim. Acta* 1919, 2, 635–646; for some selected references on the application of the Staudinger reaction, see: b) E. C. Lee, B. L. Hodous, E. Bergin, C. Shih, G. C. Fu, *J. Am. Chem. Soc.* 2005, *127*, 11586–11587; c) Y. Liang, L. Jiao, S. Zhang, J. Xu, *J. Org. Chem.* 2005, *70*, 334–337; d) J. Li, H.-N. Chen, H. Chang, J. Wang, C.-W. T. Chang, *Org. Lett.* 2005, *7*, 3061–3064; e) P. T. Nyffeler, C.-H. Liang, K. M. Koeller, C.-H. Wong, *J. Am. Chem. Soc.* 2002, *124*, 10773–10778.
- [4] W. Zhang, M. Shi, Chem. Commun. 2006, 1218-1220.
- [5] M. Shi, X.-G. Liu, Y.-W. Guo, W. Zhang, *Tetrahedron* 2007, 63, 12731–12734.
- [6] W. Zhang, M. Shi, Tetrahedron 2006, 62, 8715-8719.
- [7] F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381–1407.
- [8] These are average values based on two deuterium-labeling experiments. For details, see the Supporting Information.

FULL PAPER

- [9] Prepared according to the procedure by: R. T. Li, S. T. Nguyen, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1994, 116, 10032– 10040. CD₃MgI was prepared from CD₃I (D content >90%) with magnesium.
- [10] This step was investigated theoretically, and the transition state F was located at the HF/3-21G* level of theory. Attempts to

locate other transition states involving simultaneous proton transfer were unsuccessful at the $HF/3-21G^*$ and B3LYP/6-31G(d) levels of theory. For details, see the Supporting Information.

Received: January 7, 2011 Published Online: March 29, 2011