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We recently published’ a new stereoselective hydroxymethylation method for 

the preparation of L-glycero-D-manno-heptopyranosides. In this approach the anti- 

diastereogenic addition of (dimethylphenylsilyl)methylmagnesium chloride 2 to a 

D-manno-hexadialdo-1,Spyranoside (e.g., 1) constitutes the key carbon bond- 

forming step: the resulting a-hydroxysilane adduct (e.g., 3) is then converted to the 

homologous L-glycero-D-manno-heptopyranose (e.g., 6) by generating the hydroxy 

group from the silyl moiety. Herein we report the successful extension of this 
concept to the assembly of the branched trisaccharide, 

L-cr-D-Hepp-(l-+3)-L-a-D-Hepp-OMe 
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which (see 17) has been proposed2 to be part of the inner core region of Citrobacter 
PCM 187 lipopolysaccharide* *, as shown here: 

cY-D-Glcp-(l-+3)-L-cw-D-Hepp-(1-+3)-L-cu-D-HepP 
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L-a-D-Hepp 

*Abbreviated L-a-D-Hepp. 
+To whom enquiries should be addressed. 
**Alternative locations of the branch terminal heptose are marked by dashed lines. 
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The key step in the synthesis of acceptor and donor L-D-Hepp units 6 and 14, 

respectively, could be realized by exploiting the above-referenced stereoselective 

hydroxymethylene extension method. Thus addition (0”) of 2 in 1,3-dioxolane to 

3-0-allyl-2,4-di-0-benzyl-cu-D-manno-hexodialdo-l,5-pyranoside3 (1) in the same 

solvent occurred with high diastereofacial selectivity to afford 3 (d.p. ~95%) in a 

yield of 72%; 3 [a],, +2.5” (c 0.8)+. R, 0.5 (2:l pet. ether-ether); *H-n.m.r. data 

(CDCI,): S 4.65 (s, H-l), 1.38 (dd, H-7a), 0.97 (dd, H-7b) and 0.46 [s, (CH,),Si]; 

‘“C-n.m.r. data: S 99.5 (C-l), 21.8 (C-7), -2.0 and -2.4 [(CH,),Si]. Benzylation 

of 3 according to Czemecki et al.4 gave 4 in 97% yield; [a]o +26.0” (c 0.9); RF 0.7 

(2:l pet. ether-ether). DeallylatiorQ of 4 in the presence of 10% Pd-C and p- 

toluenesulfonic acid in 5: 1 MeOH-H,O for 8 h at 70” afforded 5 in 70% yield; [LY]~ 

+21.6” (c 1); R, 0.3 (2:l pet. ether-ether). Removal of the ally1 ether of 4 was 

accompanied by the formation of a small amount (6%) of the Peterson6 elimination 

product 7; [(Y&, +13.7” (c 1); R, 0.25 (2:l pet. ether-ether); W-n.m.r. data 

(CDCI,): 6 135.7 (C-7), 318.1 (C-6) and 98.0 (C-l). Generating the hydroxy group 

from the silyl moiety in 5 according to Fleming et ale7 with peroxyacetic acid and 

potassium bromide in AcOH-NaOAc in the dark for 1 S h at 25” furnished glycosyl 

acceptor 6 in 82% yield; [a],, +37.0” (c 1); R, 0.2 (97:3 CH,C1,-acetone); ‘H- 

n.m.r. data (CDCl,): 6 4.56 (d, J 2 Hz, H-l), 3.94 (m, H-7a and 7b); 13C-n.m.r. 

data: 6 97.7 (C-i) and 61.3 (C-7). 
Glycosyl donor 14 was synthesized in an overall yield of 65% starting from 8 

1 R’ = En, Rz = All 2 3 R’ = Ail, Rz = H 

4 R’ = All, RZ = Bn 

5 R’ = H, R* = En 

CH,OH 

I 
HC-OBn 

6 7 

*Unless otherwise noted, optical rotations were determined at 25” in CHCI, solutions at the indicated 
concentration. 
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CH,OAc CHzOR 

HC-OAc 

8 R’ = Ok, RZ = Ac 11 R = AC 

9 R’ = OAc, Rz = At 12 R=H 

10 R’ = Br, R2 = Ac 13 R= En 

CH,OEn 

I 
HC-OBn 

14 R’ = AC 

which was obtained’ via the same hydroxymethylene extension principle. 
Acetolysis of 8 with HOAc-H,SO, resulted in 9, which was converted quantita- 
tively with HBr-AcOH in the known8 a-D-glycosyl bromide 10. Transformation of 
10 into the a-D-glycosyf chloride 14 was executed via intermediates 11, l2, and 13 
according to Paulsen and Heitmans. 

Glycosylation of acceptor 6 with donor 14 under the conditions described by 
Hanessan and Banoub9 in the absence of 1,1,3,3_tetramethylurea gave a 71% yield 
of trisaccharide 15; [cz]u +31.6” (c 1); R, 0.6 (97:3 CH,Cl,-acetone); ‘H-n.m.r. 
data (CD&): 6 5.42 (t, J = 2 Hz, H-2”) 5.26 (t, .I = 2 Hz, H-2’), 5.17 (bs, H-l”), 
4.82 (d, H-l’), and 4.45 (d, H-l). ZemplCn deacylation of 15 led to the isolation of 
16 in 95% yield; [I& +28.2” (c 1). Hydrogenolysis of 16 in the presence of 10% 
Pd-C in EtOH afforded the target methyl O-L-glycero-a-D-manno-heptopyranosyl- 
(l-+3)- o-[L-gly cero-ff-D-manno-heptopyranosyl-(~~7)]-L-g~ycero-a-D-ma~~o- 
heptopyranoside (17) in 85% yield; [c~]n $114.2” (c 1, H,O). The lH-n.m.r. spec- 
trum in CDCl, at 20” showed signals for the three anomeric protons at 6 5.11 (d, 1 

C&OR 

HC-OR’ 

HC-OR’ 

15 R’ = En, R* = AC 

16 R’ = Bn, RZ = H 

17 R’ = R* = H 
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H, J = 2 Hz), 4.88 (d, 1 H, J = 2 Hz), and 4.71 (d. 1 H, J = 2 Hz). The stereo- 
chemistry at all three anomeric carbon atoms was confirmed by ‘“C-n.m.r. spectros- 
copy (CDCI,, at 20”), which showed three signals for anomeric carbon atoms of 
L-at-D-Hepp residues at 6 103.4 (IJcH = 172.9 Hz), 101.9 (‘JcH = 172.2 Hz), and 
101.6 (IJCH = 171.5 Hz), in excellent agreement with the ‘JcH value at anomeric 
carbon atoms observed by Bock and Pedersen”‘. 

In conclusion the anti addition of (dimethylphenylsilyl)methylmagnesium 
chloride to a properly protected D-manno-hexodialdo-1,Spyranoside gives easy 
access to L-a-D-Hepp units suitable for the assembly of naturally occurring oligo- 
saccharides. In close connection with our approach to the synthesis of 6 and 14, it 
may also be noted that other approaches to these type of compounds have been 
recently reported by Paulsen et aZ.l’, Brimacombe and Kabir’*, and Dziewiszek and 

Zamojski13. 
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