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Abstract Trans-cyclixation products were selectively formed from C-6-substituted acetoxy-octadienes only via 
Ni(0) catalysis u -+ B and from C-4-substituted analogs under Pd(O)- anQ Ni(0) catalysis (2, & -+ e>. 
C-5-Substituted precursors gave mixtures of diastereoisomers. Nickel(O) catalyzed allylation/methoxycarbonyl- 
ation of iodo diene u afforded 2-oxa-bicyclo[3.3.0]octanone 12 with highly diastereoselective generation of 
three stereogenic centers. 

Recently developed intramolecular Pd(O)- and Ni(0) catalyzed alkene allylations a, II -+ u and/or Iy3, coupled 

with B-elimination (J& Iy: + y) or methoxycarbonylation (III + yI, Iy + YII), show interesting potential for the 

stereocontrolled synthesis of various carbo- and heterocycles (Scheme l).l 
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In this context, we studied the topological influence of pre-existing (C-6, C-5 or C-4) over developing (C-3, 

C-7) stereogenic centers in the carbometalation step yIII + IL(. (Scheme 2). 

Scheme 2 

So far only a few scattered reports have dealt with this iss~.~ For example. Pd(0) catalyzed cyclixation of 

allylacetal ether J.g, (X=OTHP) gave a I:l-mixture of c&and trans disubstituted tetrahydrofurans a and Jg 

(Scheme 3, Table 1). 2a 
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Table 1 Cyclixations of C(6)-Substituted Acetoxy (Tetrahydropyranyloxy)octadienes 1 + 2 + 3 3 

x Y R “CatalysV) Solvent Temp [‘Cl Yield [%] Ratio 
(mol %) (Time [h]) 2+3 213 

1 a OTHP 0 “-C6H13 Pd (5) AcOH 80 (2) 15 50 : 50 
2 a OAc 0 n-C6H13 Pd (5) AcOH 80 (3) 62 52 : 48 

3 a OAc 0 uCSH13 Ni (10) THF 20 (15) 79 .99 : <l 

4 b OAc CH2 CH20Bn Pd (10) AcOH 80 (4) 67 12 : 28 

5 b OAc CH2 CH20Bn Ni (10) THF 20(1)/51(24) 88 97.3 : 2.7 
a) Catalyst prepared in situ from Pd(dba) , PPh 
Pd(PPh3)4 was used, the listed mol % 

(1:3) or from Ni(COD)2. dppb (1:l) except entry 1 where 
re 3 a er to t e metal. 

This disappointing lack of stereoselectivity was also observed on subjecting acetate & (X=OAc) to similar 

reaction conditions (entry 2). However, we were pleased to find exclusive transformation of the same precursor JJ~ 

(X=OAc) to the truns product & when employing a nickel(O) catalyst (entry 3).lb Comparison of entries 4 and 5 also 

shows a drastically improved “1,4-stereodirecting effect” of a C-6 substituent (CH20Bn) in the nickel- versus 

palladium-ene cyclixation of I-acetoxy-2.7~octadiene J&, to provide trans-cyclopentane a as the predominant 

product (97.3%. entry 5). 

We then examined the related ring closure reaction of C-5 substituted I-acetoxy-2,7-octadienes 4. Previously, an 

all-cis-stereoselective catalytic Pd-ene cyclixation of 1 -acetoxy-5-phenylsulfonyl-2.7,9-decatriene has been 

reported.2b In contrast, no, or only marginal, topological control was exerted by the phenylsulfonyl group in the Pd- 

& Ni catalyzed processes & + & + 4a (Scheme 4, Table 2). 

Scheme 4 

Table 2 Cyclixations of C(5)-Substituted Acetoxyoctadienes 4 --* S + 6 3 

R “Catalyst”‘) Solvent Temp [“Cl Yield [%I Ratio 

(mol %) (Time [h]) 5+6 S/6 

6 a S02Ph Pd (5) AcOH 80 (1) 73 51 : 49b) 

7 a S02Ph Ni (10) THF 20 (24) 78 68 : 32b) 

8 b CH20Bn Pd (7) AcOH 80 (6) 67 52 : 48 

9 b CH20Bn Ni (43) THF 20(2)/52(24) 73 77 : 23 

a) Comments as in Table 1; b) Stereoisomers not assigned. 

StiShtly better results were obtained with the CH20Bn-substituted precursor a giving cyclopentanes a + & in 

a ratio which increased from 52~48 to 77~23 when replacing Pd- by Ni catalysis (entries 8.9). 
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C-4-substituted acetoxydienes 1 and &, on the other hand, cyclixed with significantly higher stereochemical 

control (Scheme 5, Table 3). 

Scheme 5 
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Table 3 Cyclixations of C(4)-Substituted Acetoxydienes 7 or 8 + 9 + 10 3 

Starting Y R “Catalyst”‘) Solvent Temp [“Cl Yield [%] Ratio 

Diene (mol %) (Time [h]) 9 + 10 9 / 10 

10 a 7 0 n-C6Hl Pd (10) 3 AcOH 80 (1) 83 88 : 12 

11 a 7 0 n-C6H13 Ni (10) THF 28 (8) 85 97.4 : 2.6 

12 b 8 CH2 CH20Bn Pd (7) AcOH 80 (6) 72 92.6 : 7.4 

13 b 8 CH2 CH20Bn Ni (40) THF 20(1)/53(23) 74 97.7 : 2.3 

a) Comments as in Table 1. 

Thus. tram-ietrahydrofurans and cyclopentanes 2 were predominantly obtained even via the palladium catalyzed 

protocol (entries 10,12). Preferential formation of 2 over J.Q was further enhanced (up to a ratio of 97.7/2.3) in the 

corresponding “nickel-ene” reactions (entries 11, 13). 

The above mentioned studies have ignored the chirality of developing center C-7 given its planarixation in the 

final p-elimination step M -+ X (Scheme 2). Nevertheless, considering previous reactions of achiral substrates we 

expected “nickel-ene cyclixation”/carbonylation sequences yIIl + M 4 m to provide a stereocontrolled. synthetically 

useful approach to bicyclic ring systems. 

Indeed, stirring 6-hexyl-1-iodo-5-oxa-2,7-octadiene (JJ) with Ni(COD)2/dppb (1:l. 25 mol%) under CO (1 atm, 

THF/MeOH-41. RT, 17 h) afforded exclusively 2-oxa-bicyclo[3.3.0]tanones u and fi in a 89:11-ratio (68%) 

(Scheme 6). 

Scheme 6 
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It thus follows that bicyclixation of u involves a -100% StereocontrolIed nickel-me step. 
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The observed stereodirecting effects are consistent with two mechanistic alternatives: allylation of the alkene unit 

by a (E)-c-allyl- (“ene-reaction”, A, 0, or syn-r-allylmetal partner (B, p. Scheme 7). Id 

Scheme 7 

Comparison of exo- (A, B) versus e&o-orientations c, Q) reveals a steric crowding which is opposite with the 

C-6- (R’, R”) but parallel with the C-4- (R’) and unpredictable with the C-5- substitutents (R6.R6’). In this 

respect. it is noteworthy that most “palladium-ene” cyclixations exhibit low endo/exo preferences, 4, different to the 

nickel-catalyzed reactions which proceed generally in a clean exo-manner (e.g., J.L 4 12 + 1l). lb*ld) Therefore it 

does not surprise that synthetically useful inductions were here observed p& with C-4- substituents when 

employing Pd-catalysis but with C-4- lpd C-6- substituents in the nickel-catalyzed version. 

The scope and implications of these results are being further explored in our laboratories. 
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All v were g&g&l&d by IR. ‘H-NMR. ‘sC-NMR and MS. Racemic acyclic DceCUrSOrS were 

m as follows. Reaction sequences: h (X=OAc) from lg (X-OTHP) 2a via a,b). fi from methyl 

cyanoacetate via c-k,f.b). & from the corresponding gem-disulfone lb via 1). & from dimethyl malonate via m- 

p,i.a.b). a from heptanal via q,m,r.s,b). Reaction conditions: a) PPTS/MeOH, b) Ac20/Et3N/DMAP/CH2Cl2; c) 

NaH/2-(2-bromoethyl)-1,3-dioxolane/DMF; d) NaBH4/t-BuOHIMeOH; e) TBDMSOTf/Et3N; f) DIBAL- 

H/Et20, g) Ph3PMeI/t-BuOK/THF; h) Bu4NF/THF; i) NaH/BnI/THF or DMF; j) PPTS/acetOne; k) 

(MeO)2POCH2COOMe/DBU/LiCl/MeCN, 1) Na/Hg S%/AcOH/THF/MeOH/-10°c m) NaH/allyl bromide/DMF; 

n) NaH/Pd(PPh3)4/l-chloro-4-tetrahydropyranyloxy-2-butener o) NaCl/aq DMSO/l6o’C; p) LiAlH4/THF; 

q) 1,3_dithiane/BuLi/THF; r) MeI/aq MeCN/ s) vinylmagnesium bromide/Et20. The confinurations 
. . v were assigned by means of NOE evidence. 

For highly endo-selective “palladium-ene” cyclixations see ref 1by2a 

(Rcccivedin Gemally 10 January 1990) 


