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There is growing consensus that the humanattentionsys-
tem is subserved by separate subsystems, or at least by a
broad anatomical network in which different subtasks are
mediated by different brain areas (e.g., Buchel & Friston,
1997;Knight, 1997;LaBerge, 1997;Olshausen,Anderson,
& Van Essen, 1993; Posner & Petersen, 1990; Rushworth,
Nixon,Renowden,Wade,& Passingham, 1997).Although
a number of different theories have been proposed, there is
widespread agreement that visual perceptual attention is
mediated by a posterior system that includes the visual
cortex, much of the posterior parietal cortex, the pulvinar,
and the superior colliculus (e.g., Desimone & Duncan,
1995;Olshausen et al., 1993;Posner& Petersen, 1990). In
contrast, executive or decisional (i.e., conscious) attention
is thought to be mediated by an anterior system that in-
cludes the anterior cingulate, the prefrontal cortex, and per-
haps the basal ganglia and the pulvinar (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Ashby, Isen, & Turken,
1999; Goldman-Rakic, 1995; LaBerge, 1997; Posner &

Petersen, 1990). Although anatomically separate, the ques-
tion of whether the systems are functionally separate has
been only recently addressed in the attention literature.

Empirical evidence for a functionalindependenceof per-
ceptual and decisionalattention is growing (e.g., Johnston,
McCann,& Remington, 1995; Pashler, 1989, 1991, 1993;
Posner, 1993;Posner, Sandson,Dhawan,& Shulman,1989).
Johnston et al. (1995) provided some of the strongest evi-
dence to date for the functional independence of percep-
tual and decisional attention by showing that perceptual
and decisional attention systems operate at different tem-
poral stages of processing during letter identification.
Specifically, they showed that a critical reference stage of
processing (letter identification in their task) operates
after the stage of perceptual attention but prior to the stage
of decisional attention.

Within the perceptual categorization literature, there is
widespread agreement that attentional processes play a
prominent role during normal categorization (e.g., Ashby
& Lee, 1991; Estes, 1994; Goldstone, 1994; Kruschke,
1992; Maddox, 2002;Maddox & Ashby, 1998; Nosofsky,
1986; Shepard, 1964). However, the question of whether
separate perceptual and decisional attention systems op-
erate during categorization has never been broached. One
reason for the lack of data that speaks to this question is
that no categorizationstudieshavebeenconducted that have
placed the goals of the two systems in direct competition.
Rather, the goals of the perceptual and decisional atten-
tion systems are usually the same and so, empirically, the
actions of the two systems are correlated.
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Five observers categorized inverted L-shaped stimuli according to the length of the horizontal line
segment.A centrally located spatial cue preceded the stimulus on each trial. On 80% of the trials, the (rel-
evant) horizontal line segment fell within the cued location, and on 20% of the trials the (irrelevant)ver-
tical line segment fell within the cued location. The empirical results provide support for the hypothesis
that perceptual attention can focus on the stimulus attribute inside the spatially cued location at the
same time that decisional attention is focused on the (relevant)horizontal attribute—that is, the results
suggest that perceptual and decisional attention can function independently during categorization. De-
cision bound models and extended generalized context models that assume separate perceptual and
decisional attention systems were fitted to the data. Versions of the models that assume that the spatial
cue affected perceptual attention were superior to versions that assume no effect on perceptual atten-
tion. These theoretical analyses support the functional independence hypothesis and suggest that for-
mal theories of categorizationshould model the effectsof perceptualand decisional attention separately.
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The goal of this article is twofold. First, we describe the
results of an experiment in which we investigatedwhether
perceptual and decisional attention can function indepen-
dently during categorization. The approach combines a
traditionalcategorization taskwith a popular spatial cuing
paradigm (e.g., Eriksen & Hoffman, 1972; Kingstone,
1992;Klein&Hansen, 1987,1990;McCann,Folk,& John-
ston, 1992; Posner, 1980; Posner, Snyder, & Davidson,
1980). Second,we applied decision bound (Ashby, 1992a;
Maddox & Ashby, 1993) and extended generalized con-
text models (Lamberts, 1995, 1998) to the data in order to
determine the locus of the spatial cuing effect. To antici-
pate, both the empirical and model-based analyses sup-
port the hypothesis that perceptual and decisional atten-
tion systems operate separately during categorization.The
next (second) section describes the experiment, and the
third section outlines themethod.The fourth section is de-
voted to the results and theoretical analyses. Finally, we
concludewith some general comments.

SPATIAL CUING IN A PERCEPTUAL
CATEGORIZATION EXPERIMENT

To address the functional independence of perceptual
and decisional attention in categorization,we combined a
categorization task with a spatial cuingmanipulation(e.g.,
Eriksen & Hoffman, 1972; McCann et al., 1992; Posner,
1980; Posner et al., 1980). The basic idea was to devise an
experimental task that leads to competition between the
perceptual and decisional attention systems on some pro-

portion of trials, but leads to cooperationbetween the two
systems on other trials. Because of the popularity of the
spatial cuing paradigm for manipulatingperceptual atten-
tion, we decided to manipulate perceptual attention
processes across trials while holding decisional attention
processes fixed. Each stimulus consisted of a vertical and
a horizontal line joinedat an upper left corner. The lengths
of these two line segments varied across trials. The ob-
servers were informed prior to the experiment that their
task on each trial was to determinewhether the horizontal
line segment was short (CategoryA) or long (CategoryB)
and that the vertical line length was not relevant. Thus, on
every trial, the length of the horizontal line was relevant,
and the length of the vertical line was irrelevant, and the
goal of the decisional attention systemwas to place all de-
cisional attention on the horizontal line segment in order
to determine whether it was long or short and to place no
decisional attentionon the vertical line segment. Trial-by-
trial feedbackwas provided to help the observers learn the
criterion length that separated short from long horizontal
lines.Note that this was not a category learning task in the
traditional sense because the observers were told a priori
that they should focus decisional attention on the hori-
zontal line segment and that short and long segments be-
longed in CategoriesA and B, respectively.Each category
contained11 unique stimuli, which are depicted schemat-
ically in Figure 1.

In addition to this standard categorization task, a circu-
lar spatial cuing paradigmwas used to manipulate percep-
tual attentionon each trial. In many attention tasks that use

Figure 1. Schematic illustration of the stimulus structure. Solid squares denote
stimuli from Category A, and open circles denote stimuli from Category B.
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a spatial cue, the cue directs the observer’s attention to one
of several possible target locations (e.g., Kingstone, 1992;
Klein, 1994; Klein & Hansen, 1987, 1990). We took a
slightlydifferent approach.On every trial, the circular spa-
tial cue was centered on the computer screen, and the ob-
servers were instructed to place all of their perceptual at-
tention within this circular region. The observers were
informed that on 80% of the trials, the relevant line seg-
ment (i.e., the horizontal line segment) would be displayed
within the circular region.We refer to these as valid trials
because the relevant dimension is presentedwithin the cir-
cular region. On the remaining 20% of the trials, the ir-
relevant line segment (i.e., the vertical line segment) was
displayed in the circular region.We refer to these as invalid
trials because the relevant dimension is presented outside

of the circular region.1 The top panel in Figure 2 depicts a
typical valid trial. The circular spatial cue is displayed for
500 msec while the observer allocates perceptual atten-
tion to this region. Immediately following the removal of
the spatial cue, the stimulus is presented. Because this is
a valid trial, the relevant line segment falls within the cir-
cular cued region. The stimulus is presented for 100msec
and is thenmasked. The mask remains on the screen until
the observer determineswhether the relevant line segment
is short or long. The bottom panel in Figure 2 depicts a
typical invalid trial. Again the circular spatial cue is dis-
played for 500 msec while the observer allocates percep-
tual attention to this region. Immediately following re-
moval of the spatial cue, the stimulus is presented.Because
this is an invalid trial, the relevant line segment falls out-

Figure 2. Hypothetical stimulus display for a valid and an invalid trial. The
circular attention cue is included for illustrative purposes only and was not
present during the stimulus display.



328 MADDOX, ASHBY, AND WALDRON

side the circular cued region. The stimulus is presented for
100 msec and is then masked. The mask remains on the
screen until the observer determines whether the relevant
line segment is short or long.

Method
Observers. Five observers participated in the experiment. Each

reported 20/20 vision or vision corrected to 20/20. The observers
were paid $6.00 per session for their participation.
Stimuli. Each stimulus consisted of a horizontal line and a verti-

cal line connected at the upper left (see Figure 2 for examples). The
stimulus ensemble contained 22 stimuli selected from a larger set of
49 stimuli that were constructed from a factorial combination of
seven horizontal line lengths with seven vertical line lengths. A
schematic of the 22 stimuli is displayed in Figure 1. The seven line
lengths were 111, 114, 117, 120, 123, 126, and 129 pixels. The stim-
uli were computer generated and displayed on a noninterlaced VGA
monitor with 1,024 3 768 resolution in a dimly lit room. Each line
was presented in white on a black background.
Procedure. The category assignments for the 22 stimuli are de-

picted in Figure 1. Solid squares denote stimuli from Category A,
and open circles denote stimuli from Category B. Each session con-
sisted of five blocks of 110 trials each, for a total of 550 trials. Each
of the 22 stimuli was presented five times during each block of tri-
als. During one of the five stimulus presentations (22 trials total), the
display of the irrelevant component was centered in the circular cued
region (an invalid trial), and during four presentations (88 trials
total), the display of the relevant component was centered in the cir-
cular cued region (a valid trial). Thus, the spatial cue was 80% valid.
During the final three blocks of trials, some of the categorization
judgments were followed by an irrelevant component judgment, in
which the observer was asked to determine whether the irrelevant
component was short (less than 120 pixels) or long (greater than 120
pixels). The observer was required to make two irrelevant component
judgments for each of the 22 stimuli (for a total of 44 irrelevant com-
ponent judgments per block). One judgment followed a valid trial,
and the other followed an invalid trial. No corrective feedback fol-
lowed the judgments.

Prior to each session, the observers were reminded that the circular
spatial cue was valid on 80% of the trials and that they should focus
their attention within the circular cued location on each trial. Finally,
they were told that they should respond “A” if the horizontal line
was shorter than 120 pixels and respond “B” if the horizontal line
was longer than 120 pixels. A typical trial proceeded as follows:
First, the circular spatial cue was presented for 500 msec centered on
the computer screen. The cue was a circle with a diameter of 140 pix-
els. The cue was replaced by the stimulus that was presented for
100 msec followed by a pattern mask that consisted of a 200 3 200
pixel gray square region. The pattern mask remained on the screen
until the observer gave a response. Hypothetical valid and invalid
trials are depicted in Figure 2. The observer provided a categoriza-
tion response, followed by a 500-msec display with corrective feed-
back and a 500-msec intertrial interval (ITI). When an irrelevant
component judgment was required, the 500-msec feedback display
was followed by a display that asked for an irrelevant component
judgment. The observer provided a response that was followed by a
500-msec ITI and the next trial. No feedback was provided follow-
ing the irrelevant component judgments. Each observer completed
five 1-h sessions on consecutive days. The first session for all ob-
servers was considered practice and was excluded from subsequent
analyses. The observers were instructed to emphasize accuracy over
speed of responding.

Results
All analyseswere performed on the data collapsedacross

Sessions 2–5.We beginwith an analysisof the four response

types that resulted from the combinationof the two dimen-
sion judgments [relevant (horizontal) or irrelevant (verti-
cal)] with the two types of spatial cues (valid or invalid).
These included (1) judgments of the relevant dimension
when the spatial cue was valid (i.e., when the relevant di-
mension was in the cued area), (2) judgments of the rele-
vant dimensionwhen the spatial cuewas invalid (i.e., when
the relevant dimension was outside of the cued area), (3)
judgments of the irrelevant dimension when the spatial
cuewas valid (i.e., when the irrelevant dimensionwas out-
side of the cued area), and (4) judgments of the irrelevant
dimensionwhen the spatial cue was invalid (i.e., when the
irrelevant dimension was in the cued area).

Table 1 displays the proportion of correct responses for
each of these four response types averaged across the 22
stimuli separately for each observer. A 2 3 2 within-
subjects analysis of variancewas conductedon these data.
There was a main effect of dimension relevance [F(1,4) =
29.965, p < .005], with higher accuracy for the relevant
(.817) than for the irrelevant component (.623), and no
main effect of cue validity. In addition,overall accuracy on
the irrelevant component (.623) was above chance ( p <
.001). Finally, the interaction between dimension rele-
vance and cue validitywas significant [F(1,4) = 226.562,
p < .001]. A number of additional analyses were con-
ducted in order to isolate the locus of this interaction.Sev-
eral results stand out. First, accuracy for the relevant di-
mension was higher on valid trials (.856) than on invalid
trials (.778; p < .02). Second, relevant dimensionaccuracy
on invalid trials was significantlyabove chance (i.e., .778;
p < .001). Third, relevant dimension accuracy on invalid
trials (.778) was significantly larger than irrelevant di-
mension accuracy on invalid trials (.655; p < .02). Fourth,
irrelevant component accuracy was higher on invalid tri-
als (.655) than on valid trials (.591; p < .06). Finally, irrel-
evant component accuracy on invalid trials (i.e., .655)was
significantly lower than relevant component accuracy on
valid trials (i.e., .856; p < .005).2

Taken together, these results provide initial support for
functional independence of perceptual and decisional at-
tention in categorizationand suggest that decisional atten-
tion can make use of information that is not facilitated by
the spatial cue. If the perceptual and decisional attention
systems are yoked, thenon invalid trials,when the irrelevant
dimension is in the cued location, no information regard-
ing the relevant dimension should be available for pro-
cessing, and relevant dimensionperformance should be at

Table 1
Overall Proportion Correct

Relevant Irrelevant

Observer Valid Invalid Valid Invalid

1 .910 .840 .690 .745
2 .890 .840 .475 .590
3 .820 .720 .580 .635
4 .850 .690 .610 .565
5 .810 .800 .600 .740

Average .856 .778 .591 .655
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chance. If, on the other hand, the perceptual and decisional
attention systems are functionally independent, the deci-
sional attention system will be focused on the relevant di-
mension, evenwhen perceptual attention is focused on the
irrelevant dimension (as is true on an invalid trial), and per-
formance will be above chance. It is worth mentioning that
all of these results, based on averaged data, hold for each
individual observer. Specifically, for every observer, rel-
evant component accuracy on valid trials was higher than
relevant component accuracy on invalid trials and higher
than irrelevant component accuracy on invalid trials. For
4 of the 5 observers, irrelevant component accuracy was
higher on invalid trials than on valid trials. Also, overall
accuracy on the relevant component was significantly
higher than overall accuracy on the irrelevant component.3

Figure 3 displays the proportion of correct responses
for the relevant component for each of the 22 stimuli on
valid (i.e., top panel) and invalid (i.e., bottom panel) trials
averaged across the 5 observers using the same spatial
configurationof stimuli depicted in Figure 1. Figure 4 dis-
plays the same proportions for the relatively few trials in

which the observers were asked to judge the length of the
irrelevant component. For both the relevant and irrelevant
judgments, and for both cue validity conditions, the accu-
racy of all responses increased with the distance from the
stimulus to the category decisionbound.This finding is es-
pecially informative with regard to the irrelevant compo-
nent accuracy, because it indicates that the decisional at-
tentionsystemhad some access to the irrelevantcomponent.
However, it is impossible to tell from these analyses
whether information about the irrelevant component was
available at the same time that the decisionalattentionsys-
tem was judging the length of the relevant component, or
whether decisional attention was switched to the irrele-
vant component after the relevant component judgment
was completed.

A closer examination of the stimulus-by-stimulus ac-
curacy rates in Figures 3 and 4 suggests that the decisional
attention system was not able to set a criterion perfectly
along the relevant dimensionwhile ignoring the irrelevant
dimension. Specifically, the relevant dimension accuracy
rates for stimuli from the short category (i.e., with hori-

Figure 3. Correct categorization proportions for the relevant component averaged across
the 5 observers. The top value of each pair denotes the proportion correct on valid trials, and
the bottom value of each pair denotes the proportion correct on invalid trials.
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zontal lengths less than 120 pixels) generally increased
with increasingvertical length,whereas the accuracy rates
for stimuli from the long category (i.e., with horizontal
lengths greater than 120 pixels) generally decreased with
increasing vertical length. A similar result held for the ir-
relevant dimension judgments. Specifically, the accuracy
rates for stimuli from the short category (i.e., with vertical
lengths less than 120 pixels) generally increased with in-
creasing horizontal length, whereas the accuracy rates for
stimuli from the long category (i.e., with vertical lengths
greater than 120 pixels) generally decreased with increas-
ing horizontal length. This findingwas not completely un-
expected since these stimulus dimensionswere measured
in the same units and likely had some integral-dimension
qualities that made it difficult for the decisional attention
system to ignore completely the irrelevant dimension
(e.g., Garner, 1974;Maddox, 1992).

THEORETICAL ANALYSES

The results so far support the hypothesis that the per-
ceptual and decisionalattentionsystems can function sep-
arately in perceptual categorization, but this inference re-
lies on the assumption that the observers placed all of their

perceptual attention within the cued region. A more rea-
sonable assumption is that some perceptual attention spills
out of the cued circular region, even when the cuing in-
structions are effective. In this case, testing whether per-
ceptual and decisional attention can function indepen-
dently and determining the locus of the attention effect is
difficult, in the sense that it requires a process of parame-
ter estimation and model fitting. In this section, we exam-
ine the functional independence of perceptual and deci-
sional attention in two different but successful models of
categorization: Ashby and Maddox’s (1993; Maddox &
Ashby, 1993) decision bound model (DBM), and Lam-
berts’s (1995, 1998) extended generalized context model
(EGCM). Nosofsky’s (1986) generalized context model
(GCM) is not examined below, because it does not sepa-
rate perceptualfrom decisionalattention(instead it assumes
a unitary attention system; Maddox & Ashby, 1998), and
because it is rejected in favor of the othermodels for every
observer.

Decision Bound Theory
Decision bound theory takes as its fundamental axiom

that all perceptual systems are probabilistic—that is, re-
peated presentations of the same stimulus yield different

Figure 4. Correct categorization proportions for the irrelevant component averaged
across the 5 observers. The top value of each pair denotes the proportion correct on valid
trials, and the bottom value of each pair denotes the proportion correct on invalid trials.
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perceptual effects (e.g., Ashby& Lee, 1993;Geisler, 1989;
Green & Swets, 1967). The perceptual noise elicited by
repeated presentations of a single multidimensionalstim-
ulus can be represented by a multivariate probability dis-
tribution (Ashby & Lee, 1993). For a two-dimensional
stimulus, a bivariate normal distribution is assumed to de-
scribe the set of percepts. A bivariate normal distribution
is described by a mean and variance along each dimen-
sion, as well as a covariance term, mx , my , s2

x , s2
y , covxy ,

where the subscripts x and y denote dimensions x and y.
Figure 5a depicts hypothetical equal likelihood contours
for four stimuli constructed from the factorial combina-
tion of two levels along two dimensions x and y. With bi-
variate normal distributions, the equal likelihoodcontours
are always circular or elliptical.When themajor and minor
axes of the contour are parallel to the coordinate axes, the
covariance (correlation) is zero. All four distributions in
Figure 5a have zero covariance. A positive slope for the

major axis implies a positivecovariance (correlation), and
a negativeslope implies a negativecovariance.The greater
the variance along a dimension, the wider the contour in
that direction.

In decision bound theory, the experienced observer
learns to divide the perceptual space into response regions
and assigns a response to each region.On each trial, the ob-
server determines the location of the perceptual effect and
gives the response associatedwith that region of the percep-
tual space. The partition between response regions is called
the decision bound. Figure 5b displays a hypothetical de-
cisionboundfor a categorizationtask inwhichStimuli 1 and
3 are placed in Category A, and Stimuli 2 and 4 are placed
in Category B. Note that the parameters that define the
perceptual representation are separate from the parame-
ters that define the decision bound (Ashby, 1992a).

In decision bound theory, perceptual attention is as-
sumed to affect the perceptual variances, and decisional

Figure 5. (a) Hypothetical contours of equal likelihood for four stimuli (1–4).
(b)Hypothetical decision bound for a categorization problem in which Stimuli 1 and
3 are members of Category A and Stimuli 2 and 4 are members of Category B. (c)
Hypothetical contours of equal likelihood for a case in which there is perceptual se-
lective attention to dimension x. The solid line decision bound depicts a case in which
decisional selective attention to dimension x is perfect, and the dashed line depicts a
case in which decisional selective attention to dimension x is imperfect. (d) Hypo-
thetical contours of equal likelihood for a case in which there is perceptual selective
attention to dimension y. The solid line decision bound depicts a case in which deci-
sional selective attention to dimension x is perfect, and the dashed line depicts a case
in which decisional selective attention to dimension x is imperfect.
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attention is assumed to affect the decision bounds. In par-
ticular, perceptual attention is assumed to reduce the trial-
by-trial variability in the perceived values of a stimulus
along the perceptually attended dimension, relative to the
variability along the perceptually unattended dimension
(Braida & Durlach, 1972; Durlach & Braida, 1969; Luce
& Green, 1978; Luce & Nosofsky, 1984; Macmillan,
Goldberg, & Braida, 1988). Figure 5c depicts a situation
in which more perceptual attention is directed to dimen-
sion x than to dimensiony. This reduces the perceptualnoise
along dimension x relative to the perceptual noise along
dimension y. Figure 5d depicts a situation in which per-
ceptual attention is directed more to dimension y. Thus,
decision bound theory can be used to test the hypothesis
that some perceptual attention spills out of the cued circu-
lar region. If this is the case, then on valid trials, the per-
ceptual variance of the irrelevant component (which falls
outside the cued circular region)will be some finite value.

Decisional selective attention results when the decision
bound is orthogonal to one of the coordinateaxes—that is,
when the observer sets a criterion along one stimulus di-
mension and places no decisional attention on the other
dimension.This decision strategy is also referred to as de-
cisional separability (see Ashby & Townsend, 1986, and
Maddox, 1992, for details). Decisional selective attention
to dimension x holds in both Figures 5c and 5d, as denoted
by the solid line decision bound. Like perceptual selective
attention, the magnitude of decisional selective attention

can vary. For example, the broken line decision bounds in
Figures 5c and 5d depict cases in which there is imperfect
decisional selective attention to dimension x. Note that in
Figure 5c both attention systems, perceptual and deci-
sional, are operating on the same stimulus dimensionx. In
Figure 5d, on the other hand, there is perceptual selective
attention to dimension y, but decisional selective attention
to dimension x. Taken together, panels c and d of Figure 5
demonstrate pictorially that perceptual and decisional at-
tention processes are separate and thus that a functional
independence, if it exists, can be isolated.
Decision bound models. To test whether perceptual

and decisionalattentioncan function independently, we fit
decisionboundmodels to the relevant (i.e., horizontal) line
length judgments for each of the 22 stimuli separately for
each individual observer. We did not fit the irrelevant line
length judgmentsbecauseof the small numberof these judg-
ments. For each stimulus,we computed the observed prob-
abilityof responding“short” and the observed probability
of responding“long” for both valid and invalid trials. Thus,
eachmodelwas fit to a total of 88 estimated response prob-
abilities from each observer. Themodel yielded predicted
probabilitiesof responding“short” and “long” for bothvalid
and invalid trials by solving the following equations:

P(Rshort | xi) = P[h(xpi) < 0 | xi]

P(Rlong | xi) = 1 2 P(Rshort | xi),

Figure 6. Schematic illustration of the two hypotheses on the effect of the spatial cue on
perceptual attention. The left column depicts valid trials, and the right column depicts in-
valid trials. The top portion depicts the case in which there is no spatial cue effect on per-
ceptual attention (labeled Spatial Cue Effect Absent), and the bottom portion depicts the
case in which there is a spatial cue effect on perceptual attention (labeled Spatial Cue Ef-
fect Present). (See text for details.)
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where xi is a vector that contains the horizontal and verti-
cal lengths for stimulus i, xpi is the perceptual effect for
stimulus i under the assumption that bivariate normal per-
ceptual noise exists, and h is a linear decision function
(i.e., the equation for a linear decision bound). Decision
bound theory also postulates noise in the decision
process—that is, criterial noise. However, when the deci-
sion bound is linear, as in the present application,criterial
noise is nonidentifiablewith perceptual noise.

Four decision bound models were tested. They were
constructed by combining factorially two hypotheses re-
garding the effects of the spatial cue on the perceptualvari-
ances with two hypotheses regarding the effects of the
spatial cue on the decision bounds. The two hypotheses
regarding the effects of the spatial cue on perceptual at-
tention are depicted in Figure 6. One hypothesis assumes
no effect of the spatial cue on the perceptual variances and
is displayed in the top two panels of Figure 6 (labeled Spa-
tial Cue Effect Absent). This hypothesis requires that two
perceptual variance parameters be estimated from the
data. One represents the perceptual variance along the rel-
evant dimension (regardless of cue validity), and the other

represents the perceptual variance along the irrelevant di-
mension (regardless of cue validity). The second hypoth-
esis assumes that the spatial cue had an effect on the per-
ceptual variancesand is displayed in the bottom two panels
of Figure 6 (labeled Spatial Cue Effect Present). This hy-
pothesis also requires two perceptual variance parameters.
However, in this case, the perceptual parameters are not
linked to the relevant and irrelevant dimensions but rather
to which dimensionwas presented inside or outside of the
spatial cue. Specifically, one perceptual variancewas esti-
mated for the component inside the spatial cue (i.e., the rel-
evant dimension on valid trials, and the irrelevant dimen-
sion on invalid trials). A second perceptual variance was
estimated for the component outside of the spatial cue
(i.e., the irrelevant dimension on valid trials, and the rele-
vant dimension on invalid trials).4

A similar pair of hypotheseswas made about the effects
of decisionalattentionon the decision bound.The two hy-
potheses regarding the effects of the spatial cue on deci-
sional attention are depicted in Figure 7. One hypothesis
assumesno effect of the spatial cue on the decisionbound—
that is, that the same (linear) decision bound was used on

Figure 7. Schematic illustration of the two hypotheses on the effect of the spatial cue on deci-
sional attention. The left column depicts valid trials, and the right column depicts invalid trials.
The top portion depicts the case in which there is no spatial cue effect on decisional attention (la-
beled Spatial Cue Effect Absent), and the bottom portion depicts the case in which there is a spa-
tial cue effect on decisional attention (labeled Spatial Cue Effect Present). (See text for details.)
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valid and invalid trials. (Quadratic decision bounds were
also examined but in no case provided a significant im-
provement in fit.) This situation is depicted in the top por-
tion of Figure 7 (labeled Spatial Cue Effect Absent). This
version adds two free decision bound parameters (i.e., the
slope and the intercept of the boundused on all trials). The
second hypothesiswas that the spatial cue affected the de-
cision bound. In this case, different linear decisionbounds
were applied on valid and invalid trials (resulting in four
bound parameters—the slope and the intercept of the
bound used on valid trials, and the slope and the intercept
of the boundusedon invalidtrials). This situationis depicted
in the bottom portion of Figure 7 (labeled Spatial Cue Ef-
fect Present). The resulting four models are designated as
follows.

Model DBM(·,·). The spatial cue has no effect on per-
ceptual variability or on the decision bound (i.e., the cue
has no effect on perceptual or decisional attention). This
model has four free parameters: two perceptual variance
parameters (see Figure 6, top panels), and two decision
bound parameters (see Figure 7, top panels).

ModelDBM(P,·). The spatial cue affects the perceptual
variances but not the decision bound (i.e., the cue affects
perceptual attention but not decisional attention). This
model has four free parameters: two perceptual variance
parameters (see Figure 6, bottom panels), and two decision
bound parameters (see Figure 7, top panels).

Model DBM(·,D). The spatial cue affects the decision
bound but not the perceptual variances (i.e., the cue af-
fects decisional attention but not perceptual attention).
This model has six free parameters: two perceptual vari-
ance parameters (see Figure 6, top panels), and four
decision bound parameters (see Figure 7, bottom panels).

Model DBM(P,D). The spatial cue affects the percep-
tual variances and the decision bound (i.e., the cue affects
perceptual and decisional attention). This model has six
free parameters: two perceptual variance parameters (see
Figure 6, bottom panels), and four decision bound para-
meters (see Figure 7, bottom panels).

Each of these models was fitted to the relevant compo-
nent data separately for each observer. The model para-
meters were by estimated using maximum likelihood
(Ashby, 1992b; Wickens, 1982) and the goodness-of-fit

statistic was2lnL, where L is the likelihoodof the model
given the data.

The goodness-of-fit values (2lnL) for each model and
observer are presented in Table 2. The fit of the most par-
simonious decision bound model for each observer is in
bold type. The results can be summarized as follows: First,
the spatial cue had the predicted effect on perceptual at-
tention. For all 5 observers, the model that assumes the
cue affected perceptual attention fit better than the corre-
sponding model that assumes no effect of the cue on per-
ceptual attention [i.e., DBM(P,·) always fit better than
DBM(·,·), and DBM(P,D) always fit better than
DBM(·,D)], even though the two models had the same
number of perceptual variance parameters. Second, also
as predicted, in the best-fittingmodel, the perceptual vari-
ance for the component within the spatial cue (average
SD = 4.936) was smaller than the perceptual variance for
the component outside of the spatial cue (average SD =
5.806) for 4 of the 5 observers ( p < .05). The exact values
are displayed in Table 3. This was true regardless of
whether the relevant or irrelevant component was within
the spatial cue. Thus, perceptual attentionwas focused on
the component within the spatial cue. Third, in 9 of 10
comparisons, the model that assumes that the cue affected
decisional attention fit better than the corresponding
model that assumes no effect of the cue on decisional at-
tention [i.e., DBM(·,D) always fit better than DBM(·,·),
and DBM(P,D) fit better than DBM(P,·) for 4 of the 5 ob-
servers]. To determine themagnitudeof the spatial cue ef-
fect on the observer’s ability to apply decisional selective
attention, the “weight” given to each component in the
categorizationdecision was determined by examining the
slope of the best-fitting linear decision bound. A slope of
zero implies that all weight was given to the irrelevant
component and that none was give to the relevant compo-
nent (i.e., decisional selective attention to the irrelevant
component).A slope of one implies that equal weight was
given to both the irrelevant and relevant components, and
an infinite slope implies decisional selective attention to
the relevant component. Not surprisingly, on invalid tri-
als, the irrelevant component was given greater weight in
the categorization decision than it was given on valid tri-
als [i.e., in model DBM(P,D)]. Even so, on both valid and

Table 2
Goodness-of-Fit (-lnL) Values for the Decision Bound and Extended Generalized Context Models

Decision boundModels Extended Generalized Context Models

Observer DBM(·,·) DBM(P,·) DBM(·,D) DBM(P,D) EGCM(·,·) EGCM(P,·) EGCM(·,D) EGCM(P,D)

(4 parm) (4 parm) (6 parm) (6 parm) (5 parm) (5 parm) (6 parm) (6 parm)
1 654.13 644.06 643.72 643.71 665.18 660.58 657.13 657.12
2 764.29 754.62 702.88 702.46 761.86 756.45 757.26 756.35
3 938.09 935.87 926.10 922.31 942.46 934.94 931.21 931.11
4 873.77 865.01 781.26 780.56 936.98 916.17 906.30 906.30
5 978.74 978.63 974.17 974.08 988.60 988.46 988.48 988.38

Average 841.80 835.64 805.63 804.62 859.01 851.32 848.08 847.85

Note—The values in bold type denote the most parsimonious model from each model class (decision bound or extended generalized context).
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invalid trials, the decision bounds of all observers
weighted the relevant componentmuch more heavily than
the irrelevant component (i.e., the slopes were all much
larger than one). Thus, although the decisional attention
system allocated some attention to the irrelevant compo-
nent (for Observers 2–5), the lion’s share of decisional at-
tention was focused on the relevant component, regard-
less of whether it was inside or outside of the spatial cue.
This result was expected, since Figures 3 and 4 suggest
that some decisional attention was focused on the irrele-
vant component. Finally, for 4 of the 5 observers, the best
fit was provided by model DBM(P,D), which is strong ev-
idence that the cue affected both perceptual and decisional
attention.

Extended Generalized Context Model
Unlike decision bound theory, the extendedgeneralized

context model (EGCM) assumes no perceptual noise and
that each stimulus is represented by a point in a multi-
dimensional psychological space. When presented with a
target stimulus, the observer computes the distance from
the target item to each category exemplar stored in mem-
ory. Each distance is then converted into a similarity as
follows:

hij = exp{2c [inchu |hi2 hj | r + incv(12 u) |vi2 vj | r]q/r},
where hij denotes the similarity between stimuli i and j, c
is a scaling constant, inch is the binary valued (0 or 1) in-
clusion probability for the horizontal component, incv is
the binary valued inclusion probability for the vertical
component, and u is the utility placed on the horizontal
component (0 < u < 1; Su = 1). Following most appli-
cations of the model to continuous-valuedstimuli, we as-
sume Euclideandistance (r = 2) and an exponentialdecay
similarity function (q = 1). Lamberts (1995, 1998) has
suggested that the inclusion probabilities are affected by
perceptual processes and that the utility value is affected
by the decision process. The probability of responding
“short” for both valid and invalid trials is determined from
the following equation:

where bshort is the bias toward responding “short” (blong =
12bshort), and theP(Rlong |xi) = 12P(Rshort |xi). Because
the inclusion probabilities are binary valued, perceived
similarity changes discretely across time and trial. Since
we are fitting the model to aggregate data, the probability
of each possible inclusionpattern (i.e., neither component,
horizontalcomponentonly, vertical componentonly, both
components) is computed from continuous-valued inclu-
sion probabilities, i1 and i2 , that are estimated from the
data and can take on any value between 0 and 1. For each
stimulus, xi , the choice probability for each inclusionpat-
tern is computed, and the expected value of these choice
probabilitiesdenotes the model prediction (see Lamberts,
1998, for details).

Four extended generalized contextmodels were tested.
They were constructed by combining factorially two hy-
potheses regarding the effects of the spatial cue on the in-
clusion probabilities, i, with two hypotheses regarding the
effects of the spatial cue on the utility parameter, u.

Model EGCM(·,·). The spatial cue has no effect on the
inclusionprobabilitiesor on the utility (i.e., the cue has no
effect on perceptual or decisional attention). This model
has five free parameters: c, ih, iv , u, and b.

Model EGCM(P,·). The spatial cue affects the inclusion
probabilities with one inclusion probability applying to
the component within the spatially cued location (i.e., the
relevant, horizontalcomponenton valid trials, and the irrel-
evant, vertical component on invalid trials) and a second
inclusion probability applying to the component outside
of the spatially cued location (i.e., the relevant component
on invalid trials, and the irrelevant componenton valid tri-
als). The spatial cue does not affect the utility. This model
has five free parameters: c, iinside, ioutside, u, and b.

Model EGCM(·,D). The spatial cue has no effect on the
inclusionprobabilities,but does affect the utilitywith one
utility for valid trials and a second utility for invalid trials.
This model has six free parameters: c, ih, iv, uvalid, uinvalid,
and b.

Model EGCM(P,D). The spatial cue affects the inclu-
sion probabilities and the utilities.Thismodel has six free
parameters: c, iinside, ioutside, uvalid, uinvalid, and b.

The goodness-of-fit values (2lnL) for each model and
observer are presented in Table 2. The fit of the most par-
simonious EGCM is in bold type.5 The results can be
summarized as follows: First, the spatial cue had the pre-
dicted effect on perceptual attention. For all 5 observers,
the model that assumes the cue affected the inclusion
probabilities fit as well or better than the corresponding
model that assumes no effect of the cue on perceptual at-
tention [i.e., EGCM(P,·) compared with EGCM(·,·), and
EGCM(P,D) compared with EGCM(·,D)]. Second, also
as predicted, in the EGCM(P,·), the inclusion probability
for the component within the spatial cue (average iinside =
.999) was larger than the inclusion probability for the
component outside of the spatial cue (average ioutside =
.820) for all 5 observers ( p < .05). The exact values are
displayed in Table 4. Thus, perceptual attention was fo-
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Table 3
Perceptual Noise Standard Deviation Inside and Outside of the

Spatial Cue for the Best-Fitting Decision Bound Model

Spatial Cue

Observer Inside Outside

1 3.793 5.389
2 4.309 4.613
3 5.712 7.543
4 4.653 5.312
5 6.211 6.172

Average 4.936 5.806
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cused on the component within the spatial cue. Third, in
7 of 10 cases, the model that assumes the cue affected de-
cisional attention fit significantly better (based on likeli-
hood ratio tests) than the corresponding model that as-
sumes no effect of the cue on decisional attention [i.e.,
EGCM(·,D) comparedwith EGCM(·,·), and EGCM(P,D)
compared with EGCM(P,·)]. To determine the magnitude
of the spatial cue effect on the observer’s ability to apply
decisional selective attention, the utility value from the
EGCM(·,D) was examined. For all 5 observers, the util-
ity for the relevant component was larger on valid (aver-
age uvalid = .759) than on invalid (average uinvalid = .436)
trials ( p < .05). Finally, the best fit was provided by the
EGCM(P,·) for 2 observers and by the EGCM(P,D) for the
other 3 observers.

Comparison of Decision Bound and Extended
Generalized Context Models

In 8 of 10 cases, the decision boundmodel that assumes
no effect of the spatial cue on decisional attention [i.e.,
DBM(·,·) and DBM(P,·)] provideda better account of the
data than did the analogous extended generalized context
model [i.e., EGCM(·,·) and EGCM(P,·)]. Similarly, in 10
of 10 cases, the decision boundmodel that assumes an ef-
fect of the spatial cue on decisional attention [i.e.,
DBM(·,D) and DBM(P, D)] provided a better account of
the data than did the analogous extended generalized con-
text model [i.e., EGCM(·,D) and EGCM(P, D)]. To shed
additional light on the ability of the two models to account
for the data, we computed the absolute deviation between
the predicted and the observed probabilitiesof responding
“A” for the relevant segment for each of the 22 stimuli on
both valid and invalid trials. We then computed the aver-
age across the 22 stimuli on valid trials and the average
across the 22 stimuli on invalid trials. We computed these
two values for each observer for the DBM(P,D) and
EGCM(P,D) models. These data are presented in Table 5.
Several comments are in order. First, note that both mod-
els provided a better account of the valid trial data than the
invalid trial data, and the performance of the two models
were more similar for the valid trials. Even so, for valid tri-
als, theDBMmodel predictionsare closer to the observed
values than are the EGCM model predictions for all 5 ob-
servers. Second, note that the decision bound model pro-

vides a better account of invalid trial data for all 5 ob-
servers.
Irrelevant component judgments.Neithermodelwas

fit to the irrelevant component judgments because of the
small amount of data. Even so, both models provide good
qualitative accounts of these data by assuming that the
perceptual variance for the component inside the spatial
cue was smaller than the perceptual variance for the com-
ponent outside of the spatial cue, for the decision bound
model, and by assuming that the inclusion probabilities
inside the spatial cue were larger than those outside of the
spatial cue, for theEGCM.Of course, the accuracy of quan-
titative fits of these models awaits further research.

SUMMARY AND CONCLUSIONS

This article reports the results of an experiment that
provides a test of two hypotheses regarding the nature of
perceptual and decisional attention during perceptual cat-
egorization. One hypothesis is that perceptual and deci-
sional attention are yoked, and the other is that perceptual
and decisional attention are functionally independent. To
test these hypotheses, we combined a traditional percep-
tual categorization task with a spatial cuing manipulation
(e.g., Eriksen & Hoffman, 1972; Posner, 1980). The goal
of the decisional attention system was to judge the length
of a horizontal line segment. On valid trials, the horizon-
tal line segment fell within the spatially cued region, and
on invalid trials, the horizontal line segment fell outsideof
the spatially cued region. Thus, on valid trials, the two sys-
tems were able to work in concert, and on invalid trials, the
two systems competed. If the two attention systems are
yoked, performance should be at chance on invalid trials
and well above chance on valid trials. On the other hand,
if the two attention systems are functionally independent,
performance should be above chance on both valid and in-
valid trials, althoughvalid trial performance should be su-
perior.

The accuracy and theoretical analyses support the hy-
pothesis that perceptual and decisionalattention can func-
tion independentlyin categorization.Specifically, the two
systems can operate with different goals, in which one
system focuses attention on one stimulus component at
the same time the other system is focusing attention on a

Table 4
Inclusion Probabilities Inside and Outside
of the Spatial Cue for the EGCM(P,·)

Spatial Cue

Observer Inside Outside

1 1.000 .889
2 .999 .875
3 .999 .749
4 .998 .607
5 .999 .982

Average .999 .820

Table 5
Average Absolute Deviation Between Predicted and Observed
Response Probabilities for DBM(P,D) and EGCM(P,D)

DBM(P,D) EGCM(P,D)

Observer Valid Invalid Valid Invalid

1 .016 .047 .029 .058
2 .029 .048 .034 .151
3 .037 .059 .042 .081
4 .028 .039 .087 .186
5 .027 .055 .042 .089

Average .027 .050 .047 .113
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different component. This conclusion validates current
work in cognitiveneuroscience that has attempted to map
out a variety of separate, but interconnected,attentionsys-
tems (e.g., perceptual, decisional,vigilance;Posner & Pe-
tersen, 1990). It also points to the need to model percep-
tual and decisional attention separately in formal models
of categorization.

Althoughwe argue that the most reasonable interpreta-
tion of these results is in support of the functional inde-
pendencehypothesis,onemightbe able to developa single-
system exemplar model that could account for these data.
For example, one could assume that, on every trial, the ob-
servers distribute their unitary attention to the four fol-
lowing locations: (1) the likely location of the endpoint of
the horizontal line on a valid trial, (2) the likely location
of the endpoint of the horizontal line on an invalid trial,
(3) the likely location of the endpoint of the vertical line
on an invalid trial, and (4) the likely location of the end-
point of the vertical line on a valid trial, with the amount
of unitary attentionbeing largest at Location1, next largest
at Location2, next largest at Location3, and the least large
at Location 4. This model would require that each stimu-
lus be represented on four dimensions instead of two,
where two of these dimensions are “invisible” on each
trial. Although possible, a model of this sort has not been
previously proposed in the literature. Like all theoretical
issues, the best approach to the single versus multiple at-
tention systems debate is to look at converging evidence
from a variety of different sources. The present study rep-
resents a first step toward this goal.

At this point, it is worth mentioningbriefly the relations
between the present task and traditional spatial cuing de-
signs (e.g., Eriksen & Hoffman, 1972; Posner, 1980). In
the present task, the location of the spatial cue was fixed
across trials, and the observer was instructed to visually
fixate and focus perceptual attention on this location. On
valid trials, the “target” (i.e., the horizontal line) was pre-
sented within the spatially cued location, and on invalid
trials, the “target” was presented outside of the spatially
cued location.On all trials, the observer was instructed to
determinewhether the target was long or short. There was
a performance benefit on valid trials and a performance
cost on invalid trials. In traditional spatial cuing tasks, the
observer is instructed to fixate a centrally located fixation
cue, and the spatial cue directs the observer’s attentionaway
from the fixation cue to one of several possible locations.
On valid trials, the target is presented at the spatially cued
location (although the eyes are to remain on the central
fixation cue), and on invalid trials, the target is presented
at one of the other possible locations. There is a perfor-
mance benefit when the cue is valid and a performance
cost when the cue is invalid.

Note that the tasks differ in at least three important re-
spects. First, in the present task, the spatially cued location
was visually fixated, whereas in most spatial cuing tasks,
the spatiallycued locationdiffers from the fixated location.
Second, in the present task, the spatially cued locationwas
fixed across trials, whereas in most spatial cuing tasks, the

location varies across trials. Third, in the present task, ir-
relevant informationwas provided in the spatially cued lo-
cation on invalid trials, whereas in most spatial cuing
tasks, no stimulus is presented in the spatially cued loca-
tion on invalid trials. Despite thesemethodologicaldiffer-
ences, the basic findings are the same, thereby suggesting
that a functional independence of perceptual and deci-
sional attention is a robust phenomenon.

One variant of the traditionalspatial cuing task is of par-
ticular relevance to the perceptual categorizationliterature.
In this variant, the relation between spatial cuing and re-
sponse expectancy is examined (e.g., Kingstone, 1992;
Klein, 1994;Klein &Hansen, 1987, 1990). This literature
suggests that the spatial cue is less effective when the tar-
get is less likely (i.e., has a lower base rate). For example,
when a bright target is more likely than a dim target, the
bright target shows the traditionalcost–benefit effect of the
spatial cue, whereas the dim target does not (e.g., Klein &
Hansen, 1990). Base-rate effects are ubiquitous in per-
ceptual categorizationand have been found to affect the lo-
cation and nature of the decision criterion (e.g., Maddox,
in press). Future research should examine the influenceof
base-rate manipulations on performance when a spatial
cuing manipulation is combinedwith a perceptual catego-
rization task to determine whether the spatial cue and re-
sponse expectancy interact in perceptual categorizationin
the same way as they do in traditional spatial cuing tasks.

In summary, in the present study, we examined the func-
tional independenceof perceptual and decisionalattention
during perceptual categorization by combining a percep-
tual categorization task with a spatial cuingmanipulation.
The empirical and model-based analyses strongly support
the hypothesis that perceptual and decisional attentioncan
function independently in perceptual categorization.
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NOTES

1. Althoughwe structure our investigation in terms of perceptual and
decisional attention, other frameworks have been used in the literature.
For example, the term spatial attention is often used in the literature
(e.g., Maljkovic & Nakayama, 1994, 1996). We deemed the percep-
tual/decisional attention distinctionmore appropriate for the present ap-
plication for two reasons. First, most spatial cuing studies vary the at-
tended location across trials and often manipulate other factors as well
(Kingstone,1992;Klein, 1994;Klein &Hansen, 1987,1990),whereas our
task manipulation was much simpler. We used a fixed spatial location
while varying the stimulus informationwithin the cued location. Thus it
was the information that entered the perceptual system for processing
that was manipulated. Second, the terms perceptual and decisional are
more common in the categorization literature.

2. Before continuing,we must address one potential weakness of our
experimental design. Recall that an irrelevant component judgment was
required on some trials during Blocks 3–5, but not during Blocks 1–2.
Specifically, duringBlocks 3–5 one-fourth of the valid trials included ir-
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relevant component judgments, whereas all of the invalid trials included
irrelevant component judgments (see the Method section). This might
bias the observer to placemore importance on storing the irrelevant com-
ponent length on invalid trials duringBlocks 3–5 (when the irrelevant di-
mension was always cued) than during Blocks 1–2 (when the irrelevant
dimension was never cued). If this hypothesis is correct, relevant di-
mension accuracy on invalid trials should be lower during Blocks 3–5
(when emphasis was placed on storing the irrelevant component) than
during Blocks 1–2. We tested this hypothesis by computing relevant di-
mension accuracy on invalid trials separately for Blocks 1–2 and Blocks
3–5. Contrary to this hypothesis, accuracy was lower duringBlocks 1–2
(76.3%) than during Blocks 3–5 (78.9%), and the difference was non-
significant ( p > .10). It is important to note, though, that even if this hy-
pothesis was supported, it does not preclude us from distinguishingbe-
tween yoked and functionally independent attention systems. In a yoked
system, irrelevant judgments on valid trials and relevant judgments on in-
valid trials would be at chance, regardless of any decision bias. This fol-
lows because the decisional system has the information only in the cued
location to operate on.When the information in the cued location is dif-
ferent from the information needed to generate a response, performance
will be at chance regardless of any bias in the decision strategy. This pat-
tern did not hold in the present study and thus provides evidence in sup-
port of the functional independence hypothesis.

3. Before we continue, two alternative explanations for the empirical
results need to be ruled out. First, it is well established that resolution de-
clineswith eccentricity from the fovea (e.g., Geisler, 1989).Thus, one pos-
sibility is that performance is superior for the component in the spatial
cue because that component has higher spatial resolution, regardless of
whether separate attention systems exist. As a test of this alternative hy-
pothesis, we performed two separate analyses. First, we compared rele-
vant component accuracy on invalid trials when the irrelevant compo-
nent was at its longest length with relevant component accuracy on
invalid trials when the irrelevant componentwas at its shortest length. In-
valid trials are those in which the irrelevant component is in the spatial
cue. When the irrelevant component is at its shortest length, the relevant
component will be at a smaller eccentricity than when the irrelevant
component is at its longer length and thus should yield higher accuracy.
Averaged across the 5 observers the accuracy rates were 80.5% and
74.3% for the long and short irrelevant components, respectively which
is nonsignificant and in the oppositedirection from that predicted by the
spatial resolution hypothesis. Second, we compared irrelevant compo-
nent accuracy on valid trials when the relevant component was at its
longest length with irrelevant component accuracy on valid trials when
the relevant component was at its shortest length. When the relevant
component is at its shortest length, the irrelevant componentwill be at a
smaller eccentricity than when the relevant component is at its longer
length and thus should yield higher accuracy. Averaged across the 5 ob-
servers, the accuracy rates were 56.7% and 60.6% for the long and short
relevant components, respectively,which is nonsignificantbut in the pre-

dicted direction. Taken together, these analyses argue against any strong
effect of eccentricity on the results. Second, it is possible that the circu-
lar spatial cue might serve as a reference frame for the componentwithin
the cued location. Thiswould lead to higher accuracy for the component
within the cued location relative to the component outside of the cued lo-
cation. If this hypothesis is correct, it should be the case that perfor-
mance would be better for long components within the spatial cue than
for short components within the spatial cue, since the endpoints of long
componentswould be closer to the reference frame. To test this, we com-
pared accuracy for the relevant component on valid trials at the three
shortest lengthswith accuracy for the relevant component on valid trials
at the three longest lengths. Averaged across observers, accuracy was
84.2% for the short and 86.6% for the long components. This difference
was nonsignificant but is in the direction predicted by the reference
frame hypothesis.We also compared accuracy for the irrelevant compo-
nent on invalid trials at the three shortest lengths with accuracy for the
irrelevant component on invalid trials at the three longest lengths. Aver-
aged across observers, accuracy was 62.2% for the short and 56.0% for
the long components. This difference was nonsignificant and was in di-
rection opposite of that predicted by the reference frame hypothesis. Fi-
nally, because the reference frame hypothesis predicts that accuracy will
be higher when the component is in the spatial cue, it predicts that accu-
racy will be higher for the relevant component on valid trials and for the
irrelevant component on invalid trials than for the irrelevant component
on valid trials and for the relevant component on invalid trials. This pre-
dicted ordering of accuracy was not observed in the data. Taken together,
these analyses argue against the reference frame hypothesis.

4. It is important to note that this is a very restricted set of perceptual
representation assumptionswithin the framework of decision bound the-
ory. This version of decision bound theory assumes that the mean per-
ceptual effects are located at the stimulus coordinates, that the percep-
tual noise across all 22 stimuli can be characterized by only two variance
parameters, and that there is no perceptual correlation (i.e., perceptual
independence is assumed; Ashby & Townsend, 1986). It is likely that at
least some of these assumptions are violated with these stimuli. Even so,
they are sufficient for the goals of the present study.

5. A version of the model that assumes a Gaussian similarity function
was also applied. This version fit slightly better than the present version
[average fit: EGCM(·,·) = 855.08;EGCM(P,·) = 846.27;EGCM(·,D) =
843.42;EGCM(P,D) = 842.88].This version is not reported because the
exponential similarity function is used in nearly all applications of ex-
emplar theory. In addition, and perhaps more important, the parameter
values from the Gaussian similarity function models are difficult to in-
terpret. For example, in the Gaussian EGCM(·,D), the utility values are
nearly all less than .5, suggestingmore weight is being placed on the ir-
relevant dimension.
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