Accepted Manuscript

Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP_1 receptor antagonists

Masakazu Atobe, Kenji Naganuma, Masashi Kawanishi, Akifumi Morimoto, Ken-ichi Kasahara, Shigeki Ohashi, Hiroko Suzuki, Takahiko Hayashi, Shiro Miyoshi

PII:	S0960-894X(13)01106-2
DOI:	http://dx.doi.org/10.1016/j.bmcl.2013.09.032
Reference:	BMCL 20884
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	1 August 2013
Revised Date:	2 September 2013
Accepted Date:	10 September 2013

Please cite this article as: Atobe, M., Naganuma, K., Kawanishi, M., Morimoto, A., Kasahara, K-i., Ohashi, S., Suzuki, H., Hayashi, T., Miyoshi, S., Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP₁ receptor antagonists, *Bioorganic & Medicinal Chemistry Letters* (2013), doi: http://dx.doi.org/10.1016/j.bmcl.2013.09.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP₁ receptor antagonists

Masakazu Atobe*, Kenji Naganuma, Masashi Kawanishi, Akifumi Morimoto, Ken-ichi Kasahara, Shigeki Ohashi, Hiroko Suzuki, Takahiko Hayashi, Shiro Miyoshi

Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan

ARTICLE INFO

ABSTRACT

Article history: Received Revised Accepted Available online

Keywords: EP1 receptor antagonist pyrazole thiazole overactive bladder HTS We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP_1 receptor antagonists. The obtained results suggest that compound **12** provides the best EP_1 receptor antagonist activity and demonstrates good oral pharmacokinetics.

2009 Elsevier Ltd. All rights reserved.

Prostaglandin E_2 (PGE₂) is a metabolite of arachidonic acid and is involved in various physiological actions such as cell protection, oxytocic activity, pain generation, peristaltic movement in the digestive tract, anti-hypertensive activity, and diuretic activity. PGE₂ is released from the urothelium or smooth muscle of the bladder, and intravesicular PGE₂ contributes to the pathophysiology of bladder overactivity^{1, 2}.

It is believed that PGE_2 acts on bladder sensation by contractile action of the detrusor smooth muscle and by stimulating the afferent nerves of the bladder^{3, 4}. According to recent studies, there are four receptor subtypes of PGE_2 : EP_1 , EP_2 , EP_3 and EP_4 receptor^{5, 6}. Of these, the EP_1 receptor is the most abundant on the C fiber of the bladder⁷. It was found that antagonizing this receptor inhibits the voiding reflex⁷. It was also reported that the symptoms of overactive bladder accompanying prostatic hyperplasia were improved by inhibiting afferent neural activities. EP1 receptor antagonists inhibit afferent activity and are used to treat overactive bladder symptoms⁸.

A number of companies are pursuing EP1 receptor antagonists, but very limited information on their clinical development is available. The few exceptions to this are AstraZeneca's ZD6416⁹, Ono Pharmaceutical's ONO-8130¹⁰ and Ono Pharmaceutical's ONO-8539¹¹.

Our starting compound was identified by screening our inhouse compound library. 2-(1H-pyrazol-1-yl)thiazole 1 was identified as having potent EP₁ receptor antagonist activity by hEP1 reporter gene assay (Fig 1). Compound 1 was then tested for activity towards the other PGE₂ receptors (EP₂, EP₃ and EP₄) and showed a 3–8 fold EP_1 selectivity relative to EP_2 , EP_3 and EP_4 .

Figure 1. HTS hit compound

To obtain more potent compounds with higher EP₁ activity, we introduced different functional groups into compound **1** (Table 1). Regioisomer **2** showed improved EP₁ receptor antagonist activity. Compound **3** (R¹ = Ph) also showed increased activity, whereas **4** (R¹ = 4-Me-Ph) showed a loss of activity. These results suggested that the 4-methoxy group and 4-methyl group are not important for EP₁ receptor activity. However, the 4-phenol analog **5** and 3-phenol analog **6** showed moderate potency, whereas the 2-phenol **7** showed increased potency; these results indicated that *ortho* substitution is favored over *meta* or *para* substitution.

The *in vitro* ADME profile of 1, 3 and 5 was determined (Table 2). Compound 5 was found to be intrinsically unstable in human plasma (human CLint: 500 ml/min/kg; rat CLint: 130 ml/min/kg). We checked the metabolites of 5 by LC/MS/MS and found that the major metabolite arises from glucoronidation. In contrast, compound 3 was stable in human and rat plasma, so we investigated modifications of compound 3.

Table 1. Optimization of hit compound

Comp.	hEP1 rep. IC ₅₀ (nM)	CYP1A2 inh(%)	CYP2C9 inh(%)	CYP2C19 inh(%)	CYP2D6 inh(%)	CYP3A4 inh(%)	human CLint (ml/min/kg)	rat CLint (ml/min/kg)
1	1000	>10	>10	7.14	>10	>10	187	195
3	320	>10	>10	>10	>10	>10	28	ND
7	180	>10	>10	>10	>10	>10	500	130

Table 2. Profile of selected compounds

Starting from compound **3**, modification of the 4- or 5position moiety was investigated (Table 3). The analogues with $R^2 = Me$ (**8**) and $R^2 = {}^{'}Bu$ (**9**) showed a loss of EP1 antagonistic activity, whereas when R^2 was a phenyl group (**10**), EP1 activity decreased. When we prepared compound **11** ($R^2 = CF_3$, $R^3 = Me$) and **12** ($R^2 = Ph$, $R^3 = Me$), it was found that **12** showed the most potent EP₁ receptor antagonist activity.

Comp.	R ²	R ³	hEP1 rep. inhibition at $1.1 \mu M$	hEP1 rep. IC ₅₀ (nM)
3	F ₃ C	н		320
8	Me	н	14%	
9	Me Me Me	Н	1%	
10		Н	31%	
11	F ₃ C	Me		84
12	<u> </u>	Me		50

Table 3. Optimization of 3

The central ring of compound **12** was also replaced with two types of imidazole rings (Table 4) to provide imidazole **13**, which exhibited decreased activity, and imidazole **14**, in which the replacement was tolerated. These results show that the pyrazole ring plays an important role in the expression of EP1 antagonistic activity.

 Table 4. Optimization of the central ring

EP1 signals primarily through Gq, producing a transient rise in intracellular calcium. Therefore, compound 12 was tested using an intracellular Ca²⁺ release assay. In addition, compound 12 was tested for its ability to bind EP_2 , EP_3 and EP_4 receptors. As shown in Table 4, 12 demonstrated excellent EP₁ receptor selectivity over other EP family receptors. The in vitro ADME profile of 12 was also evaluated. Compound 12 was found to be intrinsically stable in plasma (human CLint: 35 ml/min/kg; mouse CLint: 15 ml/min/kg). We delineated the metabolites of compound 12 by LC/MS/MS and observed several oxidized products. Compound 12 displayed excellent apparent permeability compared with atenolol as measured by flux through MDCK cells in transwell cultures (A/BPapp = 51.64 x 10^{-6} cm/s). Compounds 1, 7 and 12 were tested using the Ames test and were found to be negative against both TA98 and TA100.

Com	ip. hEP1 rep. IC ₅₀ (nM)		Ca as IC ₅₀ (r	say hl nM)	hEP1 bind. hEP2 Ki (nM) Ki (i		ind. hEf 1) K	P3 bind. hE i (nM) l	EP4 rep. Ki (nM)
1		1000	580	D	8700	>8000) >	5000 :	>2700
7		180	800		530	>8000) >	5000 :	>2700
12		50	500		290	>8000) >	5000 :	>2700
Table 5. EP family profile of 1, 7 and 12									
Comp.	CYP1A2 inh(%)	CYP2C9 inh(%)	CYP2C19 inh(%)	CYP2D6 inh(%)	CYP3A4 inh(%)	human CLint (ml/min/kg)	rat CLint (ml/min/kg)	MDCK Papp x 10 ⁻⁶ (cm)	Ames Test TA98, TA100
1	>10	>10	7.14	>10	>10	187	195	ND	negative
7	>10	>10	>10	>10	>10	500	130	22.76	negative
12	7.93	>10	4.71	>10	>10	35	15	51.64	negative

 Table 6. In vitro ADMET profile of 1, 7 and 12

The pharmacokinetics of compounds **7** and **12** were examined via intravenous and oral administration to male Sprague–Dawley rats. The animals received a single administration of 3 mg/kg, i.v. or 10 mg/kg, p.o. Compound **12** exhibited good oral pharmacokinetics and oral bioavailability was 32%. This prolonged pharmacokinetic half-life suggests that the metabolic stability of **12** is improved (cf., Fig 2 and Fig 3).

The synthetic route for the synthesis of the 2-(1H-pyrazol-1-yl)thiazole derivatives **8–10** is highlighted in Schemes 1–3.

Compounds 1–7 are commercially available. As shown in Scheme 1, a S_NAr reaction of the known 3,5-disubstituted pyrazole derivatives 15a-c and ethyl 2-bromothiazolecarboxylate using NaH in DMF at 150°C afforded the thiazoleacetates 16a-m. Saponification of the resultant esters with NaOH provided 8-10 (Scheme 1).

Figure 2. Change in plasma concentration of 7 and 12. Each compound was dosed at 10 mg/kg, p.o. in rats.

Figure 3. Change in plasma concentration of **7** and **12**. Each compound was dosed at 10 mg/kg, p.o. in rats.

Scheme 1. Reagents and conditions: (a) ethyl 2-bromothiazole-carboxylate, NaH, DMF, 150°C, o.n. (16a: 44%, 16b: 20%, 16c: 18%); (b) 5M NaOH, EtOH, rt, o.n., (8: 55%, 9: 63%, 10: 60%).

As shown in Scheme 2, reaction of 4,4,4-trifluoro-2-methyl-1phenyl butane-1,3-dione **17** and thiosemicarbazide in ethanol under reflux produced the pyrazolylthiourea **18**, which was then alkylated *in situ* with ethyl 2-bromopyruvate (Hanzsch reaction) to give 2-(1H-pyrazol-1-yl)thiazole **19** in 37% yield in a twostep, one-pot reaction. Finally, basic hydrolysis of **19** provided **11** (Scheme 2).

Scheme 2. Reagents and conditions: (a) thiosemicarbazide, EtOH, 80°C, 1 hour; (b) ethyl 2-bromopyruvate, EtOH, 80°C, (2 steps, 17%); 5M NaOH, EtOH, rt, o.n., 99%.

The synthetic route to compound **12** started from commercially available propiophenone **20** (Scheme 3), which was first Ω -acylated to provide the corresponding 1,3-diketone **21** (LiHMDS, BzCl). Subsequent condensation with NH₂NH₂•H₂O afforded 3,5-diphenyl-4-methyl pyrazole **22**¹². Buchwald *N*-arylation¹³ of compound **22** was employed to install the thiazole-ring moiety, followed by hydrolysis to provide **12**¹⁴.

Scheme 3. Reagents and conditions: (a) LiHMDS, PhCOCI, toluene, rt, 1 min; (b) NH₂NH₂·H₂O, AcOH, rt, 30 min, (2 steps, 99%); (c) CuI, K₃PO₄, ethyl 2-bromothiazolecarboxylate, **23**, mesitylene, 185°C, (15%); (d) 5M NaOH, EtOH, rt, o.n., (82%).

The synthetic route providing compound 13 is illustrated in Scheme 4. Ethyl 2-formylthiazole-4-carboxylate was first condensed with 1-phenylpropane-1,2-dione and NH_4OAc to give the imidazole 26. Buchwald *N*-arylation of compound 26 was used to install the *N*-phenyl moiety in 27, followed by hydrolysis to give 13. The NOESY correlation of the imidazole confirmed that the structure of 27 is as shown below.

Scheme 4. Reagents and conditions: (a) NH₄OAc, phenylpropane-dione, MeOH, rt, on, (74%); (b) CuI, K₃PO₄, iodobenzene, 23, mesitylene, 185°C, (7%); (c) 5M NaOH, EtOH, rt, o.n., 71%.

Compound 14 was prepared using the route shown in Scheme 5. Suzuki-Miyaura coupling of compound 29 installed the vinyl moiety, and the styrenyl disubstituted olefin was converted by a two-step sequence (OsO_4 -catalyzed dihydroxylation followed by oxidation with Dess-Martin periodinane) to the dione 32. Dione 32 was condensed with benzaldehyde and NH₄OAc to give the imidazole 33. *N*-alkylation of compound 33 effected the installation of the *N*-methyl moiety in 34, followed by hydrolysis to afford 13. The NOESY correlation of the imidazole confirmed the structure of 34 to be as shown below.

Scheme 5. Reagents and conditions: (a) *trans*-2-phenylvinyl-boronic acid, Pd₂(dba)₃, tri*o*-tolylphosphine, K₃PO₄, DMF, 120°C, o.n., (62%); (b) OsO₄, *N*-methylmorpholine, MeCN-H₂O(4:1), rt, (38%); (c) Dess-Martin periodinane, CH₂Cl₂, rt, (48%); (d) NH₄OAc, benzaldehyde, MeOH, rt, o.n., (41%); (e) MeI, NaH, DMF, rt, 1 hour, (91%); (f) 5M NaOH, EtOH, rt, o.n., (82%).

In conclusion, we present a 2-(1H-pyrazol-1-yl)thiazole as a novel class of EP_1 receptor antagonists. Compound **12** appeared to give the best EP_1 receptor antagonist activity and good selectivity over the other PGE_2 receptors. Our research effort focused on substituting the 2-phenol ring and identified compound **12** as having good oral pharmacokinetics. Compound **12** may serve as a lead compound for further development of overactive bladder drugs. Ongoing studies will be reported elsewhere.

References and notes

- 1. Andersson, K. E., Pharmacol. Rev. 1993, 45, 253.
- Khan, M. A.; Thompson C. S.; Mumtaz F. H.; Jeremy J. Y.; Morgan R. J.; Mikhailidis D. P., Prostaglandins Leukot. Essent. Fatty Acids, 1998, 59, 415.
- Palea, S.; Toson G; Pietra C.; Trist D. G; Artibani W.; Romano O.; Corsi M., Br. J. Pharmacol., 1998, 124, 865.
- 4. Maggi, C. A., Pharmacol. Res. 1992, 25, 13.
- Negishi, M.; Sugimoto Y.; Ichikawa A., J. Lipid Mediators Cell signaling, 1995, 12, 379.
- Narumiya S.; Sugimoto Y.; Ushikubi F., Pharmacol. Rev. 1999, 79, 1193.
 Ikeda M.; Kawatani M.; Maruyama T.; Ishihama H., Biomed. Res. 2006,
- 27, 49.
 Yamaguchi, O., Folia Pharmacologica, **2003**, *121*, 331.
- Palea, S.; Tosso G.; Pietra C.; Trist D. G.; Artibani W.; Romano O.; Corsi M., Br. J. Pharmacol., 1998, 124, 865.
- Miki, T.; Matsunami, M.; Nakamura, S.; Okada, H.; Matsuya, H.; Kawabata, A., PAIN, 2011, 152, 1373.
- 11. Okada, H.; Konemura, T.; Maruyama, T., European Urology Supplements, 2010, 9, 72
- 12. Stephen T. H.; Swaminathan R. N., Org. Lett., 2006, 8, 2675.
- Antilla J. C.;, Baskin J. M.; Barder T. B.; Buchwald S. L., J. Org. Chem., 2004, 69 5578.
- Characterization data for compound 12: 2-(4-methyl-3,5-diphenyl-1H-pyrazol-1-yl)thiazole-4-carboxylic acid; ¹H NMR (400 MHz, *DMSO-d*₆) ppm: 2.13 (3H, s), 7.46-7.56 (m, 8H), 7.78 (1H, s), 7.80 (1H, s),

8.20 (1H, s), ¹³C NMR (100 MHz, *DMSO-d*₆) ppm: **Ò** 9.69 (CH₃), 116.4 (C), 126.4 (CH), 127.6 (C and 2 carbons of CH), 128.1 (2 carbons of CH), 128.54 (CH), 128.6 (C), 128.69 (3 carbons of CH), 128.9 (CH), 130.3 (2 carbons of CH), 132.0 (C), 142.1 (C), 152.44 (C), 159.89 (C), 161.52 (C), FT-IR (KBr, cm⁻¹) 3071-2540 broad, 1686 (C=O), 1671,

1522, 1499; HRMS (ESI) calcd for $\ C_{20}H_{15}N_3O_2S$ [M+H]+ 362.0958, found 362.0960.

SCRIPT EPTED MAN Δ

