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C20-trifluoro-5-oxo-ETE: A metabolically stable 5-oxo-ETE derivative
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The total synthesis of C20-trifluoro-6(E),8(Z),11(Z),14(Z) 5-oxo-ETE is reported. This compound was
designed as an x-oxidation-resistant analog of 5-oxo-ETE that would be resistant to metabolism. The tri-
fluoro derivative of 5-oxo-ETE stimulated calcium mobilization in neutrophils and desensitized these
cells to subsequent exposure to 5-oxo-ETE.

� 2011 Elsevier Ltd. All rights reserved.
Arachidonic acid (AA) 1 is converted to a large number of bio-
logically active products (eicosanoids) that are important in a vari-
ety of pathological conditions, including inflammatory and allergic
diseases.1–5 Because of the complex array of products with differ-
ent chiral centers and double bond configurations, chemical syn-
thesis of eicosanoids has been critical for their identification and
determination of their physiological and pharmacological proper-
ties. Over the past several years, our work has focused on the syn-
thesis and biological effects of a variety of AA-derived products
formed both enzymatically by lipoxygenase (LO) and cyclooxygen-
ase (COX) pathways6–9 and nonenzymatically by reactive oxygen
species (ROS)-induced oxidation.10–12 5-LO, which catalyzes the
5-peroxidation of AA leads to 5-HPETE 413–15 and leukotriene A
(LTA4).16 LTA4 is transformed by LTA4 hydrolase to LTB4, a potent
neutrophil chemoattractant that acts principally via the BLT1

receptor.17 LTA4 is also converted to the cysteinyl leukotriene
LTC4 by the addition of glutathione (GSH). LTC4 is further metabo-
lized to LTD4. These substances, previously known as ‘slow reacting
substance of anaphylaxis’, are potent stimulators of bronchocon-
striction and vascular permeability and are critical mediators in
asthma.

5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) 6 is the most
potent chemotactic agent for eosinophils among lipid mediators.18

It is formed from 5-HETE 5 by the action of a very specific and
selective dehydrogenase and exerts its biological actions through
a dedicated receptor. Because of its effects on eosinophils, 5-
oxo-ETE may be an important mediator in diseases in which these
ll rights reserved.
cells are prominent, including asthma and other allergic condi-
tions, and diseases of the gastrointestinal system.

5-oxo-ETE 6 is synthesized by 5-hydroxyeicosanoid dehydroge-
nase (5-HEDH), which is highly specific for eicosanoids containing
a 5(S)-hydroxyl group followed by a 6,7-trans-double bond
(Scheme 1). This enzyme is present in neutrophils,19 monocytes,20

lymphocytes,20 eosinophils,21 platelets,22 and some types of struc-
tural cells. 5-oxo-ETE 6 acts through a specific Gi-coupled recep-
tor,23–25 which has been cloned26,27 and is highly expressed by
eosinophils > neutrophils > monocytes as well as by certain tumor
cell lines. This receptor has been designated as the OXE receptor
(OXE-R). 5-oxo-ETE is active in vivo, eliciting infiltration of eosino-
phils into rat lung28 and both eosinophils and neutrophils into hu-
man skin.29 OXE-R is highly selective for 5-oxo-ETE 6 over a variety
of its metabolites, LTs and other eicosanoids. Although 5-oxo-ETE 6
is a chemoattractant for both neutrophils23 and monocytes,30 it is
less potent than LTB4. In contrast, among lipid mediators, 5-oxo-
ETE 6 is the strongest chemoattractant known for human eosino-
phils21 and also induces a variety of other responses in these
cells,31–33 some of which are markedly enhanced by the proinflam-
matory cytokines GM-CSF and TNFa.34

An obstacle in the biological evaluation of 5-oxo-ETE is its sus-
ceptibility to x-oxidation24 and incorporation into cellular lipids,25

both of which result in dramatic losses in biological activity. One
way to block metabolism by x-oxidation would be to modify the
x-methyl group of 5-oxo-ETE. This could also potentially interfere
with incorporation into lipids. However, alteration of the C20

methyl group could also have a marked effect on biological activity,
as 20-hydroxy-5-oxo-ETE is about 100 times less potent than 5-
oxo-ETE.24
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Scheme 1. Eicosanoids.
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Substitution of a trifluoromethyl group for the C20 methyl group
of 5-oxo-ETE is one choice for a metabolically stable 5-oxo-ETE
agonist. This would prevent x-oxidation, the major pathway for
the metabolism of 5-oxo-ETE, and may also possibly reduce the
rate of incorporation in lipids. Scheme 2 shows the synthesis of
the CF3 trifluoro derivative 23.35

The synthesis of trifluoro derivative 23 was achieved as de-
scribed in detail in Scheme 2. The aldehyde 12 was obtained by
oxidation of 11 which in turn was obtained by protecting triol 9
with dimethoxy propane. The a,b-unsaturated aldehyde 16 was
prepared as previously described starting from D-arabinose.36 The
trifluoro phosphonium salt 19 was prepared readily from commer-
cial 1,1,1-trifluoro-6-bromohexane37 by refluxing with triphenyl
phosphine in acetonitrile.

The use of D-arabinose (Scheme 3) for the preparation of 25 and
ultimately 23, although not chirally economical, is nevertheless a
very convenient procedure. The starting material 24 is very cheap
and 25 can be prepared in batches of 200 g at a time. Also, 16 can
be used for the preparation of 5-HETE and other lipoxygenase
products.

To determine the biological potency of 23, we conducted preli-
minary experiments to examine its effects on intracellular calcium
levels in human neutrophils. Neutrophils were prepared from
blood from healthy subjects as previously described by removing
erythrocytes with dextran 500 and mononuclear cells by centrifu-
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Scheme 3. Synthesis of a,b-unsaturated aldehyde 16. Reagents and Conditions: (a) TBDP
rt, 91.5%; d) Pd/C H2, EtOH, rt, 96.5%; e) periodic acid, THF, ether, rt, 77.5%; (f) 30, benz
gation over Ficoll–Paque.38 The neutrophils were suspended in
phosphate-buffered saline (PBS) and loaded with indo-1 acetoxy-
methyl ester.24 Five minutes prior to data acquisition, CaCl2

(1.8 mM) and MgCl2 (1 mM) were added. Fluorescence was mea-
sured using a spectrofluorometer with a temperature-controlled
cuvette holder equipped with a magnetic stirrer. After stabilization
of the baseline, various concentrations of 6 or 23 were added, fol-
lowed 1.5 min later by addition of 6 (10 nM) to evaluate agonist-
induced desensitization. After another 0.5 min, digitonin (0.1% final
concentration) was added.

The response of neutrophils to 5-oxo-ETE (10 nM) following ini-
tial addition of vehicle is shown in Figure 1, top curve. There was a
strong increase in fluorescence, which peaked a few seconds after
addition of 5-oxo-ETE. Digitonin was added before fluorescence re-
turned to baseline to permit measurement of the maximal fluores-
cence. Addition of C20-trifluoro-5-oxo-ETE (F3-5o) (100 nM) also
resulted in a sharp increase in fluorescence, although somewhat
less than that for 5-oxo-ETE and completely abolished the response
to 5-oxo-ETE (Fig. 1, bottom curve).

The concentration-response curves for compounds 6 and 23 on
calcium mobilization are shown in Figure 2A. 5-oxo-ETE was a po-
tent inducer of calcium mobilization with an EC50 of 4 nM. C20-tri-
fluoro-5-oxo-ETE was somewhat less potent, with a maximal
response about 50% of that for 5-oxo-ETE. Both of the above
agonists desensitized neutrophils to subsequent exposure to
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Figure 1. Effects of 5-oxo-ETE and trifluoro-5-oxo-ETE on intracellular calcium
levels in indo-1-labeled neutrophils. Either vehicle or trifluoro-5-oxo-ETE (100 nM)
was added after 1 min, followed by 5-oxo-ETE (10 nM) at 2.5 min and digitonin
(0.1%) at 3.5 min. Fluorescence due to the binding of Ca++ to indo-1 was monitored
using excitation and emission wavelengths of 331 and 410 nm.
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5-oxo-ETE, as illustrated by Figure 1. The IC50 for 5-oxo-ETE-
induced desensitization was 3 nM, whereas that for C20-trifluoro-
5-oxo-ETE was 7.5 nM (Fig. 2B).

Although C20-trifluoro-5-oxo-ETE is some what less potent an
agonist than 5-oxo-ETE, it is considerably more potent than the
5-oxo-20-HETE 7, a C20-hydroxy metabolite of 5-oxo-ETE, indicat-
ing that addition of a substituent at this position does not necessar-
ily dramatically reduce biological activity. The potent inhibitory
effect of C20-trifluoro-5-oxo-ETE on 5-oxo-ETE-induced calcium
mobilization (Fig. 2B) suggests that the trifluoro derivative binds
strongly to the 5-oxo-ETE receptor, whereas the limited maximal
response suggests that it is a partial agonist, having some antago-
nist properties. These results suggest that further modification of
the C20 methyl group may lead to the identification of 5-oxo-ETE
analogs with potent agonist or antagonist effects. Also, Figure 2B
suggests that an appropriately radio-labeled C20-trifluoro-5-oxo-
ETE could be useful in generating an OXE-R binding assay and for
long term in vivo experimentation.
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