Synthesis of heteropolynuclear complexes with 1,1,1-tris(diphenylphosphinomethyl)ethane. Crystal structure of [(OC)₄Mo{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}AuCl]

DALTON

Eduardo J. Fernández, M. Concepción Gimeno, Peter G. Jones, Antonio Laguna, Mariano Laguna and Elena Olmos

- ^a Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain
- ^b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
- ^c Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, 38023 Braunschweig, Germany

Treatment of $[M(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}]$ (M = Mo or W) with neutral or cationic gold-(i) or -(III) derivatives afforded bi- or tri-nuclear complexes containing the triphosphine $(Ph_2PCH_2)_3CMe$ (tdppme) acting as a μ -P,P',P'' ligand, a co-ordination mode poorly represented thus far. The binuclear derivative $[(OC)_4Mo(tdppme)AuCl]$ further reacts with 1 equivalent of Tl(acac) (acac = acetylacetonate) to afford $[(OC)_4Mo(tdppme)Au(acac)]$. This complex acts as a deprotonating agent in reactions with various starting materials containing phosphines such as $(Ph_2P)_2CH_2$ or $(Ph_2P)_3CH$, leading to the formation of trinuclear methanide complexes. The crystal structure of $[(OC)_4Mo(tdppme)AuCl]$ has been established by X-ray crystallography.

The chemistry of diphosphines such as $(Ph_2P)_2CH_2^{1.2}$ or its methanide $(Ph_2P)_2CH^-$ (ref. 3) has been extensively developed and some gold complexes have already been described.^{3,4} In contrast, the chemistry of triphosphines such as $(Ph_2P)_3CH$ or its methanide derivative $(Ph_2P)_3C^-$ has been far less studied.⁵ As part of our studies with triphosphines we have previously reported on the synthesis of heterometallic species where these compounds bridge chromium, molybdenum or tungsten centres and a gold(1) atom.⁶

A small number of transition-metal complexes with the triphosphine (Ph₂PCH₂)₃CMe (tdppme) have been synthesized, and in most cases the co-ordination is as a tridentate-chelating ligand, fixing three co-ordination positions and not affecting the reactivity in the rest of the molecule. Furthermore, the same co-ordination mode appears in the heteropolynuclear clusters described with this tridentate ligand, ^{7a,8} which contain gold-rhodium, -iridium or -ruthenium bonds suported by bridging hydrides. However, little attention has been paid to the study of other co-ordination modes in heteropolynuclear complexes.

We have recently described gold(I) and/or gold(II) complexes containing tdppme in different co-ordination modes, some of them being unprecedented (μ -P,P'; μ -P,P',P'' or P). Other co-ordination modes of the phosphine as a μ_3 or P,P' ligand are poorly represented. Amongst the latter type of complex the derivatives [M(CO)₄(tdppme-P,P')] (M = Mo or W) 10b present a free phosphorus which can act as a ligand towards gold-(I) or -(III) species giving rise to heterometallic derivatives. Here we describe several heteropolynuclear compounds with the triphosphine acting as a μ -P,P',P'' ligand and the use of one of these derivatives, [(OC)₄Mo(tdppme)Au(acac)] (acac = acetylacetonate), as a deprotonating agent in the synthesis of new methanide complexes.

Results and Discussion

The preparation of the starting materials $[M(CO)_4(tdppme)]$ (M = Mo or W) was as previously described, by reaction of $[M(CO)_6]$ with tdppme in refluxing ethanol.^{10b} We have

prepared them by an alternative procedure, which consists of the substitution of the piperidine ligands in $[M(CO)_4(pip)_2]$ (M = Mo or W) by the phosphine under mild conditions.

The phosphorus atom of the molybdenum complex can be oxidized by H₂O₂, affording [Mo(CO)₄{(Ph₂PCH₂)₂C-MeCH₂PPh₂(O)}] I (Scheme 1, Table 1). [When the same reaction is carried out with the tungsten complex a mixture of the corresponding oxidized derivative and (OPh₂PCH₂)₃CMe is obtained, and their similar solubilities prevent their separation.] Complex I is a colourless air-stable solid, soluble in chlorinated solvents and acetone, and slightly soluble in diethyl ether. Its IR spectrum shows three bands for the terminal CO groups, characteristic of *cis*-tetracarbonyl derivatives, ¹¹ and a broad signal at 1149 cm ¹, corresponding to the v(P=O) vibration. ¹²

The oxidation of the free phosphorus is easily demonstrated in its ³¹P-{¹H} NMR spectrum (see Table 2), because of the displacement of the resonance (P_A) to low field ($\Delta \approx 53$ ppm). The phosphorus atoms bonded to the molybdenum centre (P_x) do not show the same effect, because of the length of the hydrocarbon chain, and no coupling between A and X is observed. The ¹H NMR spectrum (Table 2) shows three signals with relative intensity 3:2:4. The first is a singlet corresponding to the methyl protons; the second, a doublet due to the methylene group bonded to the oxidized phosphorus, and the last signal appears as the AB part of an ABX system (where X is a phosphorus atom). This resonance corresponds to the four methylene protons of the six-membered ring and its simulated spectrum agrees with experiment. In the positive-ion fast atom bombardment (FAB) mass spectrum the parent peak appears protonated at m/z = 851 (20%) and peaks corresponding to the loss of each carbonyl group are also observed.

Gold(I) phosphine complexes

The tetrahydrothiophene (tht) ligand in [AuX(tht)] (X = Cl or C_6F_5) or [Au(tht)₂]ClO₄ can be displaced by the free phosphorus of [M(CO)₄(tdppme)] (M = Mo a or W b) to give the mixed neutral complexes [(OC)₄M{(Ph₂PCH₂)₂CMe-

Table 1 Analytical data and some properties of complexes 1-9

		Analysi	s (%) a		
Compound	Yield (%)	C	Н	M.p. (°C) ^b	$\Lambda_{\mathrm{M}}^{\ c}/\Omega^{-1}\ \mathrm{cm^2\ mol^{-1}}$
$1 \left[Mo(CO)_4 \left\{ (Ph_2PCH_2)_2CMeCH_2Ph_2P(O) \right\} \right]$	66	64.2 (63.7)	4.85 (4.65)	155 (decomp.)	3
$\mathbf{2a} [(OC)_{4}Mo\{(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2})\}AuCl]$	91	50.35 (50.75)	3.7 (3.7)	188 (decomp.)	5
2b $[(OC)_4W\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}AuCl]$	74	46.55 (46.9)	3.35 (3.4)	196	3
$\textbf{3a} \left[(OC)_{4}Mo\{(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2})\}Au(C_{6}F_{5}) \right]$	68	50.7 (51.2)	3.6 (3.3)	96 (decomp.)	17
$\textbf{3b} \left[(OC)_4 W \{ (Ph_2 PCH_2)_2 CMe(CH_2 PPh_2) \} Au(C_6 F_5) \right]$	56	48.05 (47.7)	3.35 (3.05)	90	21
$4a \left[\left\{ Mo(CO)_4 \left[(Ph_2PCH_2)_2 CMe(CH_2PPh_2) \right] \right\}_2 Au \right] CIO_4$	79	54.75 (55.1)	3.9 (4.0)	155 (decomp.)	127
$\textbf{4b} \left[\left\{ W(CO)_{4} \left[(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2}) \right] \right\}_{2} Au \right] ClO_{4}$	66	50.75 (50.55)	3.95 (3.7)	142	160
$\textbf{5a} \ [(OC)_{4}Mo\{(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2})\}Au(C_{6}F_{5})_{3}]$	72	49.6 (49.45)	2.3 (2.55)	152 (decomp.)	28
$\textbf{5b} \left[(OC)_4 W \{ (Ph_2 PCH_2)_2 CMe(CH_2 PPh_2) \} Au(C_6 F_5)_3 \right]$	74	46.45 (46.75)	2.8 (2.45)	125 (decomp.)	13
$\textbf{6a} \ [(OC)_{4}Mo\{(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2})\}Au(C_{6}F_{5})_{2}Cl]$	55	48.7 (48.95)	3.1 (2.8)	115 (decomp.)	25
$\textbf{6b} \ [(OC)_4W\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)_2Cl]}$	72	46.55 (46.05)	3.05 (2.65)	116 (decomp.)	43
$7 [(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(acac)]$	76	53.25 (53.2)	4.0 (4.1)	80	1
$\textbf{8} \text{[(OC)}_4\text{Mo}\{(\text{Ph}_2\text{PCH}_2)_2\text{CMe}(\text{CH}_2\text{PPh}_2)\}\text{Au}(\text{Ph}_2\text{PCHPPh}_2)\text{Au}(C_6\text{F}_5)_3]}$	71	50.2 (50.05)	2.75 (2.85)	145	2
$\textbf{9} \left[(OC)_{4} Mo\{(Ph_{2}PCH_{2})_{2}CMe(CH_{2}PPh_{2})\} Au\{Ph_{2}PC(PPh_{2})_{2}\} Mo(CO)_{4} \right]$	75	57.35 (57.2)	3.1 (3.2)	125	33
^a Calculated values are given in parentheses. ^b Or decomposition. ^c In aceto	ne.				

 (CH_2PPh_2) AuX] (X = Cl 2a, 2b or C_6F_5 3a, 3b) or the trinuclear cationic $[\{M(CO)_4[(Ph_2PCH_2)_2CMe(CH_2PPh_2)]\}_2$ -Au]ClO₄ 4a, 4b. In contrast, when a similar reaction is carried out using $[Au(PPh_3)(tht)]$ ClO₄ as starting material, an equimolecular mixture of $[Au(PPh_3)_2]$ ClO₄ and 4 is obtained in equilibrium with the expected derivative $[(OC)_4M\{(Ph_2P-CH_2)_2CMe(CH_2PPh_2)\}Au(PPh_3)]$ ClO₄. Thus, this complex cannot be isolated as a pure product.

Complexes 2-4 are isolated as white or pale yellow solids, air-

stable at room temperature. They are soluble in dichloromethane, chloroform, acetone and diethyl ether (2, 3). Their acetone solutions are neutral (2, 3) or show conductivities typical of 1:1 electrolytes (4). In their IR spectra the same pattern in the CO region is observed, and they also show a band assignable to $v(Au-Cl)^{13}$ at 333 cm⁻¹ (2), the characteristic pattern of C_6F_5 groups bonded to gold(i) at 1501vs, 955vs and \approx 800m cm⁻¹ (3) or absorptions corresponding to the perchlorate anion ¹⁴ at 1100vs (br) and 623m cm⁻¹ (4).

Table 2 Infrared and H b and P-{1H}NMR data for complexes 1-9

 $^{1}H(\delta, J/Hz)$

				2 CH ₂ P			$^{31}P-\{^{1}H\}\ (\delta, J/Hz)$		
Compound	$\tilde{\nu}(CO)/cm^{-1}$	CH_3	M-P-CH ₂	AB	H _A	H _B	J_{AB}	2 M-P _X	P _A -Au
1	2019s, 1920s, 1900vs	0.86(s)	$2.19 (d, J_{HP} 10.7)$	2.65 (ABX)	$2.57 (J_{HP} 2.7)$	$2.73 (J_{HP} 7.2)$	13.6	19.6 (s)	25.9 (s)
2a	2020s, 1923s, 1899vs		2.37 (d, J_{HP} 11.2)			$2.69 (J_{HP} 2.2)$	3.05	20.9 (s)	17.1 (s)
2b	2016s, 1920s, 1889vs	1.01 (s)	2.36 (d, J _{HP} 11.0)	2.78 (m)				1.2 (s)	16.9 (s, J _{PW} 113.8)
3a	2020s, 1922s, 1898vs		$2.38 (d, J_{HP} 10.7)$		$2.68 (J_{HP} 5.3)$	$2.78 (J_{HP} 5.0)$	14.1	20.5 (s)	25.6 (m)
3b	2016s, 1915s, 1891vs	1.0 (s)	2.36 (d, J _{HP} 10.0)	2.81 (m)		-		0.9(s)	25.4 (m, J _{PW} 112.1)
4a	2020s, 1924s, 1896vs	0.97(s)	2.66 (m)	2.41 (m)				20.1 (s)	29.9 (s)
4b	2015s, 1888vs, 1835s	0.99 (s)	2.61 (m)	2.51 (m)				0.5(s)	29.7 (s, J _{PW} 113.5)
5a	2020s, 1925s, 1893vs	1.64 (s)	$2.28 (d, J_{HP} 11.8)$	2.15 (ABX)			14.6	22.2 (s)	2.3 (m)
5b	2016s, 1921s, 1885vs	1.65 (s)	$2.28 (d, J_{HP} 12.1)$	2.28 (ABX)	$2.18 (J_{HP} 4.9)$	$2.38 (J_{HP} 4.2)$	14.5	2.0(s)	1.5 (m, J _{PW} 112.9)
6a	2020s, 1923s, 1896vs	1.33 (s)	2.84 (d, J _{HP} 12.2)	2.50 (ABX)	$2.42 (J_{HP} 3.7)$	$2.58 (J_{HP} 0)$	12.3	21.1 (s)	14.0 (m)
6b	2016vs, 1917s, 1885vs	1.38 (s)	$2.84 (d, J_{HP} 12.4)$	2.61 (ABX)	$2.52 (J_{HP} 5.2)$	$2.70 (J_{HP} 5.2)$	15.7	1.5 (s)	13.9 (m, J _{PW} 112.6)
7 ^d	2020s, 1924s, 1898vs	1.10 (s)	2.25 (d, J _{HP} 10.9)	2.52 (m)				20.2 (s)	22.6 (s)
8 e	2020s, 1925s, 1898vs	0.99(s)	2.35 (d, J _{HP} 11.2)	2.65 (ABX)	$2.61 (J_{HP} 5.1)$	$2.69 (J_{HP} 5.1)$	12.3	21.0 (s)	28.5 (s)
9 f	2020vs, 1895vs, 1847s	0.74 (s)	1.93 (d, J _{HP} 10.4)	1.79 (m)				20.8 (s)	26.6 (s)
	2004vs, 1895vs, 1847s			3.09 (m)					

^a In CH₂Cl₂ solutions; v = very, s = strong. ^b In CDCl₃ solutions, δ from external SiMe₄; s = singlet, m = multiplet, d = doublet. ^c In CDCl₃ solutions, δ from external 85% H₃PO₄; t = triplet. ^d The ¹H NMR spectrum also presents resonances corresponding to the acetylacetonate ligand at δ 2.19 (s, 2CH₃) and 4.51 (m, CH). ^e Au-P_B, δ 33.2 (d, J_{BY} 14.6, J_{AB} 316.5 Hz); P_Y-Mo, δ 16.9 (m). ^f Au-P_B, δ 33.4 (t, J_{BY} 0, J_{AB} 315.8 Hz); P_Y-Mo, δ 19.9 (m).

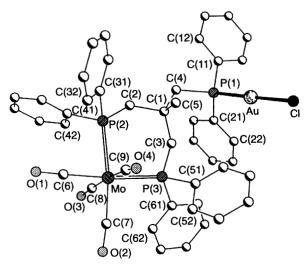


Fig. 1 Molecular structure of complex 2a showing the atom numbering scheme. Radii are arbitrary; hydrogen atoms are omitted for clarity

The $^{31}P-\{^{1}H\}$ NMR spectra of complexes 2–4 show two different phosphorus environments corresponding to an AX₂ system with $J(AX) \approx 0$. For 2b, 3b and 4b the upfield resonance (P_X) displays tungsten satellites with J(PW) = 114, 112 and 113 Hz, respectively. For the pentafluorophenyl derivatives 3 the signal of the phosphorus bonded to gold(i) (P_A) appears as a multiplet because of coupling to the fluorine atoms. The ^{1}H NMR spectra are very similar to those observed for complex 1, although in some cases the ABX system is not resolved, and only a multiplet is observed (Table 2). The ^{19}F NMR spectra of 3 display a typical pattern for C_6F_5 : two multiplets for the o-and m- and a triplet for the p-fluorine nuclei.

The positive-ion fast atom bombardment (FAB) mass spectra of complexes 2-4 show the molecular-ion peaks at m/z = 1069 (2a, 52), 1152 (2b, 5), 1198 (3a, 20) and 1284 (3b, 90%) or the molecular cation peaks at m/z = 1863 (4a, 20) and 2037 (4b, 26%). Some of them also present signals corresponding to loss of carbonyl groups; the peak corresponding to the fragment [Au(tdppme)]⁺ at m/z = 821 always appears with high intensity.

The crystal structure of complex 2a has been determined by X-ray crystallography and the molecule is shown in Fig. 1;

selected bond lengths and angles are collected in Table 3. The molybdenum atom approaches octahedral co-ordination quite closely, with a maximum deviation from ideal angles of 7.5°. The presence of a six-membered chelate ring causes no distortion arising from the bite angle of the phosphine, with an almost ideal value of 90.14(6)° [P(2)-Mo-P(3)]. There are two slightly different ranges of Mo-CO bond distances; the shortest [1.991(7) and 1.997(8) Å] are to the carbonyl groups trans to the phosphorus atoms, whereas the bond lengths to the cis carbonyls are 2.029(8) and 2.041(8) Å. The Mo-P distances, 2.509(2) and 2.537(2) Å are very dissimilar but similar values were found in the complex [Mo(CO)₄{(Ph₂P)₂CH₂}]¹⁵ [2.501(2) and 2.535(3) Å]. The co-ordination at the gold centre is linear, P(1)-Au-Cl 177.47(7)°. The bond lengths at the gold atom, Au-Cl 2.284(2) and Au-P(1) 2.232(2) Å, are of the same order as those found in the complex [Mo(CO)₄{(Ph₂P)₂CHP- Ph_2AuCl] ⁶ [2.2749(14) and 2.2249(13) Å, respectively]. The intramolecular Au · · · Mo distance is very long, 7.406(2) Å.

Gold(III) phosphine complexes

Mixed gold(III) and molybdenum or tungsten derivatives can be obtained by ligand-displacement or bridge-cleavage reactions. Thus, treatment of $[M(CO)_4(tdppme)]$ (M = Mo a or W b)with $[Au(C_6F_5)_3(tht)]$ (1:1) or $[\{Au(C_6F_5)_2(\mu-Cl)\}_2]$ (2:1) leads to the neutral dinuclear products [(OC)₄M{(Ph₂PCH₂)₂C- $Me(CH_2PPh_2)$ $Au(C_6F_5)_2X$ $X = C_6F_5$ 5a, 5b or Cl 6a, 6b) as white or yellow air-stable solids. They are soluble in chlorinated solvents, acetone and diethyl ether and nonconducting in acetone solutions. Their IR spectra show the same pattern, corresponding to cis-tetracarbonyl derivatives in the terminal CO region and with bands at 1507vs, 969vs, \approx 805m and 795m cm $^{-1}$ from the C_6F_5 groups bonded to the gold(III) centre; the last two show the characteristic pattern for $Au(C_6F_5)_3$ groups ¹⁶ in 5, and confirming a cis disposition ¹⁷ in 6. In the spectra of 6 a v(Au-Cl) absorption at 336m (6a) or 332m cm⁻¹ (6b) also appears.

The ^{31}P - ^{1}H } NMR spectra of these complexes show an AX₂ system without coupling between the different phosphorus atoms, and in all cases the resonance corresponding to the phosphorus *trans* to C_6F_5 (P_A) appears as a multiplet caused by the coupling to the ^{19}F nuclei. The signal due to the phosphorus atoms bonded to tungsten (P_X) in **5b** and **6b** shows satellites [J(PW) = 113 Hz]. The ^{19}F NMR spectra confirm the presence of two types of C_6F_5 groups with a relative integration

Table 3 Selected bond lengths (Å) and angles (°) for complex 2a

Au-P(1)	2.232(2)	Au-Cl	2.284(2)
Mo-C(6)	1.991(7)	Mo-C(7)	1.997(8)
Mo-C(8)	2.029(8)	Mo-C(9)	2.041(8)
Mo-P(2)	2.509(2)	Mo-P(3)	2.537(2)
P(1)-C(21)	1.810(7)	P(1)-C(11)	1.815(7)
P(1)-C(4)	1.838(6)	P(2)-C(41)	1.822(7)
P(2)-C(31)	1.835(7)	P(2)-C(2)	1.834(6)
P(3)-C(51)	1.829(7)	P(3)-C(3)	1.843(7)
P(3)-C(61)	1.851(7)	C(1)-C(5)	1.538(9)
C(1)-C(4)	1.543(9)	C(1)-C(3)	1.544(8)
C(1)-C(2)	1.552(8)	C(6)-O(1)	1.148(8)
C(7)-O(2)	1.146(9)	C(8)-O(3)	1.135(8)
C(9)-O(4)	1.146(9)	., .,	
P(1)-Au-Cl	177.47(7)	C(6)– Mo – $C(7)$	88.7(3)
C(6)-Mo-C(8)	86.4(3)	C(7)-Mo- $C(8)$	86.9(3)
C(6)-Mo- $C(9)$	93.1(3)	C(7)-Mo- $C(9)$	87.8(3)
C(8)– Mo – $C(9)$	174.8(3)	C(6)-Mo- $P(2)$	83.8(2)
C(7)– Mo – $P(2)$	172.5(2)	C(8)– Mo – $P(2)$	91.9(2)
C(9)-Mo-P(2)	93.2(2)	C(6)-Mo- $P(3)$	173.4(2)
C(7)-Mo- $P(3)$	97.3(2)	C(8)-Mo- $P(3)$	91.1(2)
C(9)-Mo-P(3)	90.0(2)	P(2)-Mo-P(3)	90.14(6)
C(21)-P(1)-C(11)	103.8(3)	C(21)-P(1)-C(4)	106.5(3)
C(11)-P(1)-C(4)	104.5(3)	C(21)-P(1)-Au	112.5(2)
C(11)-P(1)-Au	110.7(2)	C(4)-P(1)-Au	117.7(2)
C(41)-P(2)-C(31)	100.9(3)	C(41)-P(2)-C(2)	100.5(3)
C(31)-P(2)-C(2)	105.5(3)	C(41)-P(2)-Mo	111.4(2)
C(31)-P(2)-Mo	118.3(2)	C(2)-P(2)-Mo	117.7(2)
C(51)-P(3)-C(3)	105.8(3)	C(51)-P(3)-C(61)	97.4(3)
C(3)-P(3)-C(61)	98.3(3)	C(51)-P(3)-Mo	116.3(2)
C(3)-P(3)-Mo	117.2(2)	C(61)-P(3)-Mo	118.7(2)
C(5)-C(1)-C(4)	109.6(5)	C(5)-C(1)-C(3)	112.0(5)
C(4)-C(1)-C(3)	110.2(5)	C(5)-C(1)-C(2)	111.0(5)
C(4)-C(1)-C(2)	102.5(5)	C(3)-C(1)-C(2)	111.2(5)
C(1)-C(2)-P(2)	119.4(5)	C(1)-C(3)-P(3)	121.4(5)
C(1)-C(4)-P(1)	121.7(4)	O(1)-C(6)-Mo	174.5(6)
O(2)-C(7)-Mo	174.5(6)	O(3)-C(8)-Mo	173.5(6)
O(4)-C(9)-Mo	176.5(6)		

of 2:1 for 5 or 1:1 for 6. The ¹H NMR spectra are very similar to those found for the compounds described above, although for 5a it is not possible to calculate the values for $\delta(A)$, $\delta(B)$, J(AX) and J(BX), because the ABX system and the doublet of the methylene group are superposed.

In all the mass spectra (FAB+) the molecular-ion peaks appear at m/z = 1532 (5a, 5), 1618 (5b, 8), 1400 (6a, 6) and 1486 (6b, 13%). There are also peaks corresponding to the loss of CO or C_6F_5 groups, or to the fragments [M(tdppme)]⁺ (M = Au and Mo 5 or Au and W 6), in accord with the bridging nature of the ligand.

Methanide complexes

We have previously reported the use of acetylacetonate gold complexes, such as [Au(acac)(PPh₃)], in the synthesis of methanide complexes ^{6,18} and they are recognized as good deprotonating agents. Taking this fact into account, we have synthesized the acetylacetonate gold(I) derivative [(OC)₄-Mo{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(acac)] 7 by the reaction of equimolecular amounts of 2a and Tl(acac), in order to use it as a deprotonating reagent. Complex 7 was isolated as an air-stable white solid, non-conducting in acetone solution. Its IR spectrum shows, besides three carbonyl bands, two broad vibrations at 1655vs and 1641vs cm⁻¹, consistent with the presence of the acetylacetonate anion bonded through the C³ atom.¹⁹

Its $^{31}P-\{^1H\}$ NMR spectrum is very similar to that of the starting complex 2a; the signal of the phosphorus bonded to gold(i) (P_A) is displaced to low field $(\Delta = 5.5 \text{ ppm})$. In its 1H NMR spectrum the three resonances of the phosphine protons appear as described above, and there are also two new signals corresponding to the acetylacetonate ion at $\delta 2.19$ (s, $2CH_3$) and

4.51 (m, CH). The molecular-ion peak is not present in the mass spectrum (FAB+) of 7, but some peaks can be assigned to fragments corresponding to loss of the acac or CO groups.

We have recently reported the reaction of $[Au(C_6F_5)_3-(dppm)]$ (dppm = $Ph_2PCH_2PPh_2$) and the diauracyclic acetylacetonate complex $[(acac)AuCH(Ph_2PAuPPh_2)_2CHAu-(acac)]$ (2:1), which results in deprotonation of the phosphine and co-ordination of the free phosphorus to the gold(I) centre to give the hexanuclear derivative $[(C_6F_5)_3Au-(Ph_2PCHPPh_2)AuCH(Ph_2PAuPPh_2)_2CHAu(Ph_2PCHPPh_2)-Au(C_6F_5)_3]^{4d}$ In contrast, treatment of $[Au(C_6F_5)_3(dppm)]$ with $[Au(acac)(PPh_3)]$ results in an unresolved mixture of $[(C_6F_5)_3Au(Ph_2PCHPPh_2)Au(PPh_3)]$ and $[(C_6F_5)_3Au\{Ph_2PCH(AuPPh_3)PPh_2\}Au(PPh_3)]^{+20}$

The reaction of [Au(C₆F₅)₃(dppm)] with complex 7 in an equimolecular ratio gives the trinuclear derivative [(OC)₄-Mo{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(Ph₂PCHPPh₂)Au(C₆-F₅)₃] **8** as a pure yellow product. It is moderately stable in the solid state, but decomposes in solution. Its IR spectrum presents, besides the pattern of *cis*-M(CO)₄L₂ complexes, absorptions corresponding to the Au(C₆F₅)₃ fragment. Its ³¹P-{¹H} NMR spectrum shows a singlet corresponding to two phosphorus atoms bonded to molybdenum (P_X), a multiplet due to the phosphorus linked to the gold(II) centre (P_Y), and the two phosphorus of the gold(I) environment appear as an AB system (Table 2). Its ¹⁹F NMR spectrum presents the typical pattern of the Au(C₆F₅)₃ fragment.

Similarly to the last reaction, $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ reacts with acetylacetonatogold(I) complexes, giving the expected methanide derivatives.⁶ Thus, treatment of $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ with an equimolecular amount of complex 7 results in the synthesis of the trinuclear methanide $[(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au\{Ph_2PC(PPh_2)_2\}-Mo(CO)_4]$ 9 as a pale yellow solid. The IR spectrum presents bands corresponding to two different cis- $Mo(CO)_4L_2$ groups, and a new vibration at 879m cm⁻¹, due to the $(PPh_2)_3C^-$ system.^{5d} In its $^{31}P-^{1}H$ NMR spectrum two signals of the phosphorus atoms of the metallocycles and an AB system corresponding to the P-Au-P unit appear. Its mass spectrum (FAB+) shows the molecular-ion peak at m/z = 1808 (4%).

Experimental

All the reactions were performed at room temperature (except when indicated) and under dry nitrogen for the synthesis of the methanide complexes 8 and 9 and all the solvents were dried by standard methods. Infrared spectra were recorded in the range 4000–200 cm⁻¹ on a Perkin-Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets and in dichloromethane solutions for the CO vibrations. Conductivities were measured in ca. 5×10^{-4} mol dm⁻³ solutions with a Jenway 4010 digital conductimeter. The carbon and hydrogen analyses were carried out with a Perkin-Elmer 240C microanalyser. Proton, ¹⁹F and ³¹P-{¹H} NMR spectra were recorded on Bruker ARX 300 spectrometer in CDCl₃ and chemical shifts are cited relative to SiMe₄ (external, ¹H), 85% H₃PO₄ (external, ³¹P) and CFCl₃ (external, ¹⁹F). Mass spectra were recorded on a VG Autospec instrument, with the FAB technique, using 3-nitrobenzyl alcohol as matrix. Yields, elemental analyses, melting points and conductivities for the new complexes are listed in Table 1. The following compounds were prepared according to the published procedures: cis-[M(CO)₄(pip)₂],¹¹ $[AuCl(tht)]^{21}$ $[Au(C_6F_5)(tht)]^{22}$ $[Au(PPh_3)(tht)]ClO_4^{23}$ $(C_6F_5)_3(dppm)]^{25}$ and $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}].^6$

Syntheses

 $[M(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}]$ (M = Mo or W). To a suspension of 0.5 mmol of cis- $[M(CO)_4(pip)_2]$ (M = Mo,

0.189; or W, 0.233 g) in dichloromethane (40 cm³) was added (Ph₂PCH₂)₃CMe (0.312 g, 0.5 mmol). After refluxing the mixture for 1 h a small quantity of solid was filtered off through Celite and the solution concentrated *in vacuo*. Addition of hexane gave a white (Mo) or pale yellow (W) solid, which was filtered off and washed with hexane. Yield: 96 (Mo) or 86% (W).

[Mo(CO)₄{(Ph₂PCH₂)₂CMeCH₂PPh₂(O)}] 1. To a dichloromethane solution of [Mo(CO)₄{(Ph₂PCH₂)₂CMe(CH₂P-Ph₂)}] (0.166 g, 0.2 mmol) was added two drops of H₂O₂ (35% in water). The solution was stirred for 15 min, filtered through a 1 cm layer of anhydrous magnesium sulfate and concentrated to ca. 5 cm³. Addition of hexane (20 cm³) led to precipitation of complex 1 as a white solid.

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}AuCl] (M = Mo 2a or W 2b). To a solution of 0.2 mmol of [M(CO)₄{(Ph₂PCH₂)₂-CMe(CH₂PPh₂)}] (M = Mo, 0.166; or W, 0.184 g) in dichloromethane (20 cm³) was added [AuCl(tht)] (0.064 g, 0.2 mmol). After stirring for 1 h at room temperature the solution was concentrated under reduced pressure and hexane was added (20 cm³) to precipitate the products as white (2a) or yellow (2b) solids.

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(C₆F₅)] (M = Mo 3a or W 3b). Addition of [Au(C₆F₅)(tht)] (0.090 g, 0.2 mmol) to 0.2 mmol of [M(CO)₄{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}] (M = Mo, 0.166; or W, 0.184 g) in dichloromethane afforded complex 3a or 3b after 1 h of stirring. The solvent was then partially removed *in vacuo*, whereupon the products were obtained by addition of hexane (20 cm³) as a white (3a) or yellow (3b) solid. ¹⁹F NMR: 3a, δ - 116.0 (m, o-F), -155.1 [t, p-F, ³J(FF) 20.0] and -162.2 (m, m-F); 3b, δ - 116.0 (m, o-F), -155.0 [t, p-F, ³J(FF) 19.8 Hz] and -162.3 (m, m-F).

[$\{M(CO)_4[(Ph_2PCH_2)_2CMe(CH_2PPh_2)]\}_2Au\}CIO_4$ (M = Mo 4a or W 4b). To a dichloromethane solution containing 0.2 mmol of [$M(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}\}$] (M = Mo, 0.166; or W, 0.184 g) was added [$Au(tht)_2$]ClO₄ (0.047 g, 0.1 mmol). The solution was stirred for 1 h and then concentrated to ca. 5 cm³ followed by addition of diethyl ether, which gave 4a or 4b as a pale yellow solid.

[(OC)₄M{(PPh₂CH₂)₂CMe(CH₂PPh₂)}Au(C₆F₅)₃] (M = Mo 5a or W 5b). Method 1. Reaction of [Au(C₆F₅)₃(tht)] (0.157 g, 0.2 mmol) with 0.2 mmol of [M(CO)₄{(Ph₂PCH₂)₂C-Me(CH₂PPh₂)}] (M = Mo, 0.166; or W, 0.184 g) in dichloromethane (20 cm³) produced after 1 h a colourless (5a) or yellow (5b) solution, which was concentrated under reduced pressure. Addition of hexane (20 cm³) gave a white (5a) or yellow (5b) precipitate, which was filtered off and washed with hexane.

Method 2. To a suspension of 0.2 mmol of cis-[M(CO)₄(pip)₂] (M = Mo, 0.076; or W, 0.093 g) in dichloromethane (20 cm³) was added [Au(C₆F₅)₃{(Ph₂PCH₂)CMe(CH₂PPh₂)₂}] (0.265 g, 0.2 mmol). After stirring the mixture for 1 h at reflux temperature it was filtered through a 1 cm layer of Celite to remove a small quantity of solid. The solvent was then partially evaporated and hexane (20 cm³) added to obtain the product as a white (5a) or yellow (5b) solid. ¹⁹F NMR: 5a, δ – 120.0 and –121.8 (m, o-F), –156.3 and –157.1 [t, p-F, ³J(FF) 19.9 and 20.0] and –159.8 and –161.2 (m, m-F); 5b, δ –119.8 and –121.6 (m, o-F), –156.1 and –156.8 [t, p-F, ³J(FF) 20.1 and 20.0 Hz] and –159.5 and –160.9 (m, m-F).

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(C₆F₅)₂Cl] (M = Mo 6a or W 6b). Addition of [{Au(C₆F₅)₂(μ -Cl)}₂] (0.113 g, 0.1 mmol) to a dichloromethane solution of 0.2 mmol of [M(CO)₄{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}] (M = Mo, 0.166; or

W, 0.184 g) afforded complex **6a** or **6b** after 1 h at room temperature. The solution was concentrated *in vacuo* and addition of hexane (20 cm³) led to precipitation of a white (**6a**) or yellow (**6b**) solid. ¹⁹F NMR: **6a**, δ – 121.0 and – 122.6 (m, o-F), –155.4 and –156.2 [t, p-F, 3J (FF) 20.0 and 19.9] and –159.5 and –160.9 (m, m-F); **6b**, δ –121.0 and –122.5 (m, o-F), –155.4 and –156.2 [t, p-F, 3J (FF) 19.8 and 20.0 Hz] and –159.5 and –160.9 (m, m-F).

[(OC)₄Mo{(PPh₂CH₂)₂CMe(CH₂PPh₂)}Au(acac)] 7. To a solution of complex 2a (0.213 g, 0.2 mmol) in dichloromethane (20 cm³) was added an excess of Tl(acac) (0.121 g, 0.4 mmol). The mixture was stirred for 1 d and TlCl removed by filtration through Celite; the solvent was then evaporated under reduced pressure and hexane was added to precipitate complex 7 as a white solid.

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(Ph₂PCHPPh₂)Au-(C₆F₅)₃] **8.** Addition of complex 7 (0.113 g, 0.1 mmol) to a freshly dried diethyl ether solution of [Au(C₆F₅)₃(dppm)] (0.108 g, 0.1 mmol) at room temperature and under nitrogen produced **8** after 3 h as a yellow precipitate, which was filtered off and washed with diethyl ether. ¹⁹F NMR: δ –120.3 and –120.7 (m, o-F), –159.2 and –160.1 [t, p-F, ³J(FF) 19.4 and 20.2 Hz] and –162.2 and –162.7 (m, m-F).

[(OC)₄Mo{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au{Ph₂PC(PPh₂)₂}-Mo(CO)₄] 9. To a solution of [Mo(CO)₄{(Ph₂P)₂CHPPh₂}] (0.078 g, 0.1 mmol) in freshly dried dichloromethane (20 cm³) and under a nitrogen atmosphere was added complex 7 (0.113 g, 0.1 mmol). After 1 h of stirring the yellow solution formed was filtered through a 1 cm layer of Celite to remove a small quantity of solid, the solvent was then partially evaporated and hexane (20 cm³) added, which gave 9 as a yellow solid.

Crystal structure determination of compound 2a·CH₂Cl₂

Crystal data and data-collection parameters. $C_{46}H_{41}AuCl_3-MoO_4P_3$, M=1149.95, monoclinic, space group $P2_1/n$, a=14.624(5), b=12.758(4), c=24.745(6) Å, $\beta=106.64(3)^\circ$, U=4423(2) ų, Z=4, $D_c=1.727$ Mg m³, F(000)=2264, $\lambda(Mo-K\alpha)=0.710$ 73 Å, $\mu=3.93$ mm³, T=-130 °C.

A crystal $0.60 \times 0.30 \times 0.20$ mm was mounted in inert oil on a Stoe-STADI4 diffractometer, and used to collect 8137 intensities to $2\theta_{\rm max}$ 50° (monochromated Mo-K $_{\alpha}$ radiation). An absorption correction based on ψ scans was applied, with transmission factors 0.745–0.913. Merging equivalents gave 7793 independent reflections ($R_{\rm int}=0.036$). Cell constants were refined from the $\pm \omega$ angles of 52 reflections in the range 20 20–22°. Weighting scheme employed: $w=1/\sigma^2(F_o^2)+0.0348P^2+19.5659P$, where $P=(F_o^2+2F_c^2/3)$.

Structure solution and refinement. The structure was solved by the heavy-atom method and subjected to full-matrix least-squares refinement on F^2 (program system SHELXL 93). ²⁶ All non-hydrogen atoms were refined anisotropically; hydrogen atoms were included using a riding model. Refinement proceeded to $wR(F^2) = 0.108$, conventional R(F) 0.043, for 518 parameters and 396 restraints (light-atom displacement parameters and ring planarity). S = 1.06; maximum $\Delta \rho$ 1.6 e Å⁻³.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc.*, *Dalton Trans.*, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/174.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (PB94-0079) for financial support and the Instituto de Estudios Riojanos for a grant (to E. O.).

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99.
- 2 B. Chaudret, B. Delavaux and R. Poiblanc, Coord. Chem. Rev., 1988,
- 3 A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743.
- 4 (a) H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751; (b) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1992, 3365; (c) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, Angew. Chem., Int. Ed. Engl., 1994, 33, 87; (d) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, J. M. Lopez-de-Luzuriaga and M. A. Rodríguez, Chem. Ber., 1995, 128, 121; (e) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and E. Olmos, Inorg. Chim. Acta, 1995, 238,
- 5 (a) H. H. Karsch, A. Appelt and G. Müller, Angew. Chem., Int. Ed. Engl., 1985, 24, 402; (b) H. H. Karsch, A. Appelt, G. Müller and J. Riede, Organometallics, 1987, 6, 316; (c) J. Forniés, R. Navarro, M. Tomás and E. P. Urriolabeitia, J. Chem. Soc., Dalton Trans., 1994, 505; (d) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1993, 3401; (e) E. J. Fernández, M. C. Gimeno, P. G. Jones, B. Ahrens, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1994, 3487; (f) A. Stützer, P. Bissinger and H. Schmidbaur, Chem. Ber., 1992, 125, 367.
- 6 E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and E. Olmos, J. Chem. Soc., Dalton Trans., 1994, 2891. 7 (a) A. Albinati, L. M. Venanzi and G. Wang, Inorg. Chem., 1993,
- 32, 3660; (b) L. F. Rhodes and L. M. Venanzi, Inorg. Chem., 1987, 26, 2692; (c) J. Ellermann, H. A. Lindner and M. Moll, Chem. Ber., 1979, 112, 3441; (d) J. Ellermann and H. A. Lindner, Z. Naturforsch., Teil B, 1976, 31, 1350; (e) O. Walter, T. Klein, G. Huttner and L. Zsolnai, J. Organomet. Chem., 1993, 458, 63; (f) H. Schmidbaur, A. Stützer and P. Bissinger, Z. Naturforsch., Teil B, 1992, 47, 640.

- 8 A. Albinati, F. Demartin, P. Janser, L. F. Rhodes and L. M. Venanzi, J. Am. Chem. Soc., 1989, 111, 2115; A. Albinati, J. Eckert, P. Hofmann, H. Rüegger and L. M. Venanzi, Inorg. Chem., 1993, 32,
- 9 E. J. Fernández, M. C. Gimeno, A. Laguna, M. Laguna, J. M. López-de-Luzuriaga and E. Olmos, J. Organomet. Chem., 1996,
- 10 (a) S. T. Liu, H. E. Wang, L. M. Yiin, S. C. Tsai, K. J. Liu, Y. M. Wang, M. C. Cheng and S. M. Peng, Organometallics, 1993, 12, 2277; (b) J. Chatt, G. J. Leigh and N. Thankarajan, J. Organomet. Chem., 1971, 29, 105; (c) M. K. Cooper, K. Henrick, M. McPartlin and J. L. Latten, *Inorg. Chim. Acta*, 1982, **65**, L185.

 11 D. J. Darensbourg and R. L. Kump, *Inorg. Chem.*, 1978, **17**, 2680.
- 12 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986, p. 341.
- 13 R. Usón, A. Laguna and J. Vicente, Rev. Acad. Cienc. Zaragoza, 1976, 31, 211,
- 14 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
- 15 K. K. Cheung, T. F. Lai and K. S. Mok, J. Chem. Soc. A, 1971, 1644.
- 16 R. Usón, A. Laguna, M. Laguna, E. J. Fernández, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1982, 1971
- 17 R. Usón, A. Laguna, J. García and M. Laguna, Inorg. Chim. Acta, 1979, 37, 201.
- 18 M. C. Gimeno, A. Laguna, M. Laguna, F. Sanmartín and P. G. Jones, Organometallics, 1993, 12, 3984; E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, Organometallics, 1995, 14, 2918.
- 19 K. Nakamoto, Infrared and Raman Spectra of Inorganic and
- Coordination Compounds, 4th edn., Wiley, 1986, pp. 264 and 265. 20 E. J. Fernández, M. C. Gimeno, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, unpublished work.
- 21 R. Usón and A. Laguna, Organomet. Synth., 1989, 3, 322. 22 R. Usón, A. Laguna and J. Vicente, J. Chem. Soc., Chem. Commun., 1976, 353.
- 23 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
- 24 R. Usón, A. Laguna, M. Laguna and A. Abad, J. Organomet. Chem., 1983, **249**, 437.
- 25 R. Usón, A. Laguna, M. Laguna and E. Fernández, Inorg. Chim. Acta, 1980, 45, L177.
- 26 G. M. Sheldrick, SHELXL 93, A Program for Crystal Structure Refinement, University of Göttingen, 1993.

Received 29th April 1996; Paper 6/02969H