Reaction of α-Ketoketene S, N-Acetals with Hydroxylamine: A Facile General Route to 5-Aryl-3-(N-arylamino, N-alkylamino, or N-azacycloalkyl)-isoxazoles¹ A. RAHMAN, J. N. VISHWAKARMA, R. D. YADAV, H. ILA*, H. JUNJAPPA* Department of Chemistry, North-Eastern Hill University, Shillong 793 003, Meghalaya, India In the course of our synthetic studies on polarized ketene S,S-, S,N-, and N,N-acetals, we have developed simple and convenient routes for N-alkyl(or aryl)-aminopyrazoles², -pyrimidines³, and the corresponding -pyridones⁴. As part of this investigation, we now report a facile general method for 5-aryl-3-N-arylamino-(or -alkylamino or -azacycloalkyl)-isoxazoles 2 by reacting 1 with hydroxylamine. Our survey of the literature revealed that the doubly activated ketene S,N-acetal derived from acetylacetone has been reacted⁵ with hydroxylamine to give the corresponding 3-anilinoisoxazole. However, no attempts to develop a general synthetic route for 3-N-substituted-aminoisoxazoles from the easily available ketoketene S,N-acetals 1 have been made. **SYNTHESIS** Table. 5-Aryl-3-(N-substituted-amino)-isoxazoles 2a-o prepared | Prod
No. | | R ¹ | \mathbb{R}^2 | Yield
[%] | m.p.
[°C] | Molecular
formula ^a
or Lit.
m.p. [°C] | I.R. (KBr)
v [cm ⁻¹] | ¹ H-N.M.R. (CDCl ₃ or CDCl ₃ /DMSO- d_6) δ [ppm] | M.S.
m/e
(M+) | |-------------|---|---|----------------|--------------|----------------|---|-------------------------------------|--|---------------------| | 2a | C ₆ H ₅ | C₀H₅ | Н | 88 | 143-144° | 142-143°5 | 3340, 1620,
1600 | 6.25 (s, 1 H, H-4); 6.7–7.85 (m, 10 H _{arom}); 8.0 (br. s, 1 H, exchangeable with D ₂ O, NH) | 236 | | 2b | 4-H ₃ C—C ₆ H ₄ | C_6H_5 | Н | 80 | 186° | C ₁₆ H ₁₄ N ₂ O (250.3) | 3380, 1625,
1600 | 2.31 (s, 3 H, CH ₃); 6.28 (s, 1 H, H-
4); 6.7-7.7 (m, 4 H _{arom}); 8.3 (m,
5 H _{arom}); 8.30 (br. s, 1 H,
exchangeable with D ₂ O, NH) | 250 | | 2c | 4-H ₃ CO—C ₆ H ₄ | C_6H_5 | Н | 75 | 174° | $C_{16}H_{14}N_2O_2$ (266.3) | 3410, 1624,
1602 | 3.78 (s, 3 H, OCH ₃); 6.22 (s, 1 H, H-4); 6.7-7.5 (m, 9 H _{arom} + NH) | - | | 2d | 4-Cl—C ₆ H ₄ | C_6H_5 | Н | 85 | 194° | $C_{15}H_{11}CIN_2O$ (270.5) | 3400, 1625,
1600 | 6.30 (s, 1 H, H-4); 6.75–7.8 (m, 9 H _{arom}); 8.62 (br. s, 1 H, exchangeable with D ₂ O, NH) | 272,
270 | | 2e | C ₆ H ₅ | C_2H_5 | Н | 75 | 101° | $C_{11}H_{12}N_2O$ (188.2) | 3265, 1625,
1600 | 1.22 (t, 3 H, CH ₃); 3.25 (br. q, 2 H, CH ₂); 3.98 (br. s, 1 H, NH); 5.86 (s, 1 H, H-4); 7.15-7.5 (m, 3 H _{arom}); 7.5-7.8 (m, 2 H _{arom}) | _ | | 2f | 4-H ₃ CO—C ₆ H ₄ | C_2H_5 | Н | 69 | 78 -80° | $C_{12}H_{14}N_2O_2$ (218.3) | 3275, 1628,
1600 | 1.21 (t, 3 H, CH ₃); 3.22 (q, 2 H, CH ₂); 3.70 (s, 3 H, OCH ₃); 3.78 (br. s, 1 H, NH); 5.80 (s, 1 H, H-4); 6.6–7.7 (m, 4 H _{arom}) | an consu | | 2g | 4-Cl—C ₆ H ₄ | C_2H_5 | Н | 92 | 141° | $C_{11}H_{11}CIN_2O$ (222.5) | 3280, 1628,
1600 | 1.21 (t, 3 H, CH ₃); 3.25 (br. q, 2 H, CH ₂); 3.75 (br. s, 1 H, NH); 5.81 (s, 1 H, H-4); 7.2–7.7 (m, 4 H _{arom}) | - | | 2h | C_6H_5 | $C_6H_5CH_2$ | Н | 56 | 136° | $C_{16}H_{14}N_2O$ (250.3) | 3300, 1622 | 4.35 (br. s, 3 H, CH ₂ + NH); 5.92 (s, 1 H, H-4); 7.1–7.45 (m, 8 H _{arom}); 7.4–7.75 (m, 2 H _{arom}) | 10000 | | 2i | 4-Cl—C ₆ H ₄ | $C_6H_5CH_2$ | Н | 86 | 116° | C ₁₆ H ₁₃ CIN ₂ O
(284.5) | 3320, 1630 | 4.30 (br. s, 3 H, CH ₂ + NH); 5.90 (s, 1 H, H-4); 7.1–7.5 (m, 7 H _{arom}); 7.5–7.7 (m, 2 H _{arom}) | 286,
284 | | 2j | 4-H ₃ CC ₆ H ₄ | C ₆ H ₅ CH ₂ | Н | 92 | 121° | C ₁₇ H ₁₆ N ₂ O (264.3) | 3320, 1630 | 2.32 (s, 3 H, CH ₃); 4.20 (br. s, 1 H, NH); 4.35 (br. s, 2 H, CH ₂); 5.91 (s, 1 H, H-4); 7.05–7.4 (m, 7 H _{arrom}); 7.4–7.7 (m, 2 H _{arrom}) | * 300 | | 2k | C ₆ H ₅ | —(CH ₂) ₄ — | | 90 | 95° | $C_{13}H_{14}N_2O$ (214.3) | 1630, 1610,
1595 | | communication | | 21 | C ₆ H ₅ | (CH ₂) ₅ | | 88 | 85° | C ₁₄ H ₁₆ N ₂ O
(228.3) | 1620, 1595,
1580 | 1.5–1.75 (m, 6 H, CH ₂); 3.1–3.3 (m,
4 H, CH ₂); 5.98 (s, 1 H, H-4); 7.2–
7.4 (m, 3 H _{arom}); 7.5–7.7 (m,
2 H _{arom}) | | | 2m | C_6H_5 | (CH ₂) ₂ O(CH ₂) ₂ | | 87 | 155° | $C_{13}H_{14}N_2O_2$ (230.3) | 1625, 1595,
1550 | | _ | | 2n | C_6H_5 | (CH ₂) ₂ N(CH
C ₆ H ₅ | 2)2- | 88 | 127° | C ₁₉ H ₁₉ N ₃ O
(309.4) | 1625, 1595,
1545 | | | [&]quot; Satisfactory microanalyses obtained: C ± 0.39 , H ± 0.33 , N ± 0.34 . When 1a was refluxed with hydroxylamine (generated in situ) in ethanol, corresponding 3-anilinoisoxazole 2a was obtained in 88% yield. The other 3-anilino- (2b-d), 3-ethylamino- (2e-g), and 3-benzylaminoisoxazoles (2h-j) were similarly obtained in 56-92% yields. The corresponding S.N-acetals 1k-n, derived from secondary amines, similarly yielded the corresponding isoxazoles 2k-n in 87-90% yields (Table). Very few 3-N-substituted-aminoisoxazoles have been reported in the literature. The only known 5-phenyl-3-anilino-(or p-bromoanilino)-isoxazoles were prepared by reaction of hydroxyl- amine with either phenylpropiolthioanilide^{6,7} or benzoyl ketene O,N-acetal⁸. The starting materials are not easily available in both the methods and the yield of isoxazole is low in the former case. The present method therefore provides a simple and high yield method for 2 from the easily available S,N-acetals 1. The S,N-acetals 1a-j were prepared by our earlier reported procedure³, while the cyclic S,N-acetals 1k-n were obtained by methylation of the corresponding thioamides in the presence of potassium carbonate in refluxing acetone⁹. ## Downloaded by: Rutgers University. Copyrighted material. ## 5-Aryl-3-N-arylamino-(or -alkylamino or -azacycloalkyl)-isoxazoles; General Procedure: A solution of S, N-acetal 1a-n (0.01 mol) and hydroxylamine (generated from 0.04 mol of hydroxylamine hydrochloride and 0.04 mol of potassium hydroxide in 5 ml of water, neutral to litmus) in ethanol (25 ml) is refluxed for 3-4 h. The ethanol is removed on a water bath and the concentrated reaction mixture is poured into ice-cold water (150 ml). The water layer is extracted with chloroform (2×75 ml), and the chloroform layer is dried with sodium sulfate, and evaporated to give isoxazoles 2a-n which are crystallised from ethanol (Table). Received: August 23, 1983 ¹ Part XXIX of the series; Part XXVIII: B. Myrboh, H. Ila, H. Junjappa, J. Org. Chem., in press. S. M. S. Chauhan, H. Junjappa, Synthesis 1975, 798. ³ A. Kumar, V. Aggarwal, H. Ila, H. Junjappa, Synthesis 1980, 748. ⁴ V. Aggarwal, G. Singh, H. Ila, H. Junjappa, Synthesis 1982, 214. ⁵ A. Dornow, K. Dehmer, *Chem. Ber.* 100, 2577 (1967). ⁶ D. E. Worrall, J. Am. Chem. Soc. 59, 933 (1937). ⁷ D. E. Worrall, E. Lavin, J. Am. Chem. Soc. 61, 104 (1939). ⁸ H. D. Stachel, Chem. Ber. 96, 1088 (1963). ⁹ F. C. V. Larsson, S.-O. Lawesson, Tetrahedron 30, 1283 (1974).