

Journal of Fluorine Chemistry 79 (1996) 49-52



# Reactions of N-sulfinylfluoroalkanesulfonylamides with alkene oxides

Shizheng Zhu<sup>a,\*</sup>, Jie Zhang<sup>a</sup>, Bin Xu<sup>a</sup>, Xianglin Jin<sup>b</sup>

<sup>a</sup> Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P.R. China
<sup>b</sup> Institute of Physical Chemistry, Peking University, Beijing 100871, P.R. China

Received 8 November 1995

## Abstract

Reactions of *N*-sulfinylfluoroalkanesulfonylamides,  $R_fSO_2NSO(1)$ , with alkene oxides 2 at room temperature gave the cyclo condensation products 2-oxa-3-fluoroalkanesulfonyl-1,2,3-oxathiazolidines,  $R_fSO_2NCH(R)CH_2OS(O)(3)$ . When R was phenyl, the compound decomposed at 160 °C to give *N*-fluoroalkanesulfonylaziridine,  $R_fSO_2NCH_2CH(C_6H_5)$ , with elimination of SO<sub>2</sub>. Acidic hydrolysis of 3c  $[R_f=I(CF_2)_2O(CF_2)_2, R=Ph]$  gave  $R_fSO_2NHCH(Ph)CH_2OH(5)$  which was identified by X-ray diffraction analysis.

Keywords: N-Sulfinylfluoroalkanesulfonylamides; Alkene oxides; Cyclo condensation; 2-Oxa-3-fluoroalkanesulfonyl-1,2,3-oxathiazolidines; X-ray diffraction; NMR spectroscopy; IR spectroscopy; Mass spectrometry

## 1. Introduction

The reaction of *N*-sulfinylamine, ArNSO, with alkene oxides was well studied many years ago [1–4]. For example, Etlis *et al.* [1] reported that in the presence of  $Et_4NBr$ , ArNSO reacted with oxirane at 95–100 °C in a sealed ampoule to give 2-oxa-3-aryl-1,2,3-oxathiazolidine, ArNCH<sub>2</sub>CH<sub>2</sub>OS(O). Yamada *et al.* [2,3] found that ArNSO reacted with ethylene oxide without solvent and catalyst to form mainly resinous products, which decomposed to *N*,*N*'-diarylhexahydro-1,4-diazines, ArNCH<sub>2</sub>CH<sub>2</sub>N(Ar)CH<sub>2</sub>CH<sub>2</sub>, with evolution of SO<sub>2</sub> when heated up to 160 °C.

During the study of the chemistry of N-sulfinylfluoroalkanesulfonylamides,  $R_fSO_2NSO$  (1), it was found that the polar N=S double bond is very sensitive to nucleophilic attack [5,6] and is also subjected to a Diels-Adler reaction with dienes [7]. In this paper, the cyclo condensation between 1 and alkene oxides is reported and the decomposition of the corresponding heterocyclo products is studied in detail.

# 2. Results and discussion

Reaction of N-sulfinylaniline with oxirane in the presence of catalysts such as  $Et_4NBr$ , LiCl or LiBr at 60–90 °C gave a cyclo condensation product. In the case of  $R_rSO_2NSO$  (1),



Scheme 1.  $R_f = I(CF_2)_2O(CF_2)_2$ , (1a); R = H, (2a);  $R_f = H(CF_2)_2O(CF_2)_2$ , (1b);  $R = C_6H_5$  (2b)].

the strong electron-withdrawing group  $R_tSO_2$  makes the nitrogen sulfur double bond more reactive and easy to react with nucleophiles. The reaction of 1 with alkene oxides 2 occurred smoothly at 0 °C and without catalyst.

In contrast to the reaction of Ar–N=S=O with alkene oxide, Etlis has reported that two regioisomers, (3-aryl-4alkyl) and (3-aryl-5-alkyl)-2-oxa-1,2,3-oxathiazolidine, were obtained, the latter being the major product [1]. However, reaction of 1 with styrene oxide **2b** gave only 3-fluoroalkanesulfonyl-4-phenyl-2-oxa-1,2,3-oxathiazolidine (**3c**, **d**). The reaction results are summarised in Table 1. The structure of product **3c** was characterised by <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra, and by elemental analyses, and was further confirmed by X-ray analysis of its hydrolysis product **5** (Fig. 1). In the reactions a small amount of the by-product R<sub>1</sub>SO<sub>2</sub>NH<sub>2</sub> is also formed.

The cyclo condensation products **3a** and **3b**,  $R_{f}SO_{2}NCH_{2}CH_{2}OS(O)$ , are high boiling point oils which can be purified by vacuum fractional distillation without decomposition at 160–170 °C. Compound **3c**,  $R_{f}SO_{2}$ -  $NCH(Ph)CH_{2}OS(O)$ , is a solid which decomposed at 160 °C to *N*-fluoroalkanesulfonylaziridine,  $R_{f}SO_{2}$ -

<sup>\*</sup> Corresponding author.

Table 1

| Reactants          | Solvent            | Products | B.p. (°C/mmHg)<br>or m.p. (°C) | Yield <sup>a</sup><br>(%) |
|--------------------|--------------------|----------|--------------------------------|---------------------------|
| 1a + 2a            | ether              | 3a       | 136-138/2                      | 62                        |
| 1b + 2a            | ether              | 3b       | 130-132/2                      | 68                        |
| 1a + 2b<br>1b + 2b | benzene<br>benzene | 3c<br>3d | 94–95<br>87–89                 | 77<br>56                  |

<sup>a</sup> Isolated yields based on 1.



Table 2 Selected bond lengths (Å) for compound 5

| C(1)-C(7)   | 1.502(12) | N(1)-S(1)   | 1.579(8)  |
|-------------|-----------|-------------|-----------|
| C(7) - N(1) | 1.499(12) | S(1) - C(9) | 1.829(10) |
| C(7) - C(8) | 1.538(13) | S(1)-O(2)   | 1.410(7)  |
| C(8)-O(1)   | 1.436(11) | S(1)-O(3)   | 1.430(7)  |
|             |           |             |           |

| Table 3 |  |
|---------|--|
|---------|--|

Selected bond angles (∞) for compound 5

| 0(2)-S(1)-O(3)     | 122.4(4) | O(2)-S(1)-N(1) | 111.7(4) |
|--------------------|----------|----------------|----------|
| O(3) - S(1) - N(1) | 107.5(4) | O(2)-S(1)-C(9) | 104.8(5) |
| O(3) - S(1) - C(9) | 104.7(4) | N(1)-S(1)-C(9) | 104.9(4) |
| N(1)-C(7)-C(1)     | 110.6(7) | S(1)-N(1)-C(7) | 123.1(6) |
| O(1)-C(8)-C(7)     | 110.4(7) | N(1)-C(7)-C(8) | 106.0(7) |
|                    |          |                |          |



 $NCH_2CHPh$  (4), through the elimination of SO<sub>2</sub> (see Scheme 3 below).

It should be noted that both Yamada *et al.* [2] and Tsuge and Mataka [4] have reported that  $ArNCH(R)CH_2OS(O)$ (R=H, Ph) decomposed on heating and gave the *N*,*N'*-diarylhexahydro-1,4-diazine derivatives via coupling of the two intermediates (Scheme 2).

In our case, no corresponding 1,4-diazine derivatives could be detected during the decomposition of 3c. The sole product was 4 which was a high boiling point oil characterised by comparison with an authentic sample which was prepared from the reaction of  $R_tSO_2N_3$  with styrene [8].

The hydrolysis of 3c under acidic conditions gave a pale yellow solid 5. Recrystallisation from CH<sub>3</sub>CN-CH<sub>3</sub>OH gave colourless crystals. Their structure was determined by X-ray crystal structure analysis and is as shown in Fig. 1, the bond angles and bond lengths being listed in Tables 2 and 3. The proposed mechanism for the hydrolysis is that 3c is first protonated at the nitrogen atom, followed by N-S bond scission and evolution of SO<sub>2</sub> (Scheme 4).

In conclusion, the cyclo condensation of N-sulfinylfluoroalkanesulfonylamides with alkene oxides have been



studied and the products were 2-oxa-3-fluoroalkane-sulfonyl-(4-phenyl-)-1,2,3-oxathiazolidines.

#### 3. Experimental details

Melting points were measured on a Thiele apparatus. Both melting points and boiling points are reported uncorrected. Solvents were purified and dried before use. <sup>1</sup>H NMR (60 MHz) and <sup>19</sup>F NMR (54.6 MHz) spectra were recorded on a Varian-360L instrument with TMS and TFA ( $\delta_{CFCI_3} = \delta_{TFA} + 77.8$ , and with upfield as positive) as internal and external standards, respectively. <sup>1</sup>H NMR and <sup>13</sup>C NMR (300 MHz) spectra were recorded on a Bruker AM-300 instrument. Elemental analysis were performed at this Institute. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Low resolution mass spectra were obtained on a Finnigan GC–MS 4021 instrument.

Reactants 1 were synthesized by refluxing the corresponding sulfonylamines with SOCl<sub>2</sub> [9].

# 3.1. Reaction of 1 with 2a

Ethylene oxide (5 ml, excess) was bubbled into a 50 ml flask containing a solution of **1a** (4.7 g, 10 mmol) and dry ether (15 ml) at 0 °C for 2 h. The reaction mixture was then stirred for another 2 h at room temperature. The solvent and excess ethylene oxide were evaporated and the residue distilled under vacuum to give  $I(CF_2)_2O(CF_2)_2SO_2NH_2$  (b.p. 88–90 °C/2 mmHg, 0.5 g, 12%), which was identified with an authentic sample [9], and  $I(CF_2)_2O(CF_2)_2SO_2$ -NCH<sub>2</sub>CH<sub>2</sub>OS(O) (**3a**) (3.2 g, b.p. 139 °C/2 mmHg, 62%). Compound **3a**: IR (film  $u \text{ cm}^{-1}$ ): 2984 (m): 2880 (w

Compound **3a**: IR (film,  $\nu$ , cm<sup>-1</sup>): 2984 (m); 2880 (w, CH<sub>2</sub>); 1378 (s, SO<sub>2</sub>); 1188 (m, S=O); 1220–1080 (vs, C–

F). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 5.00 (m, CH<sub>2</sub>O); 3.60 (m, NCH<sub>2</sub>) ppm. <sup>19</sup>F NMR  $\delta$ : -12.5 (s, ICF<sub>2</sub>); 3.9 (m, OCF<sub>2</sub>); 7.8 (m, CF<sub>2</sub>O); 37.7 (s, CF<sub>2</sub>S) ppm. MS *m/e*, %): 514 (M<sup>+</sup>H, 1.6); 466 (M<sup>+</sup>H-SO, 37.7); 450 (M<sup>+</sup>H-SO<sub>2</sub>, 100.0); 227 (ICF<sub>2</sub>CF<sub>2</sub><sup>+</sup>, 90.6). Analysis: Calc. for C<sub>6</sub>H<sub>4</sub>F<sub>8</sub>INO<sub>5</sub>S<sub>2</sub>: C, 14.04; H, 0.78; N, 2.73; F, 29.63%. Found: C, 14.34; H, 0.55; N, 2.77; F, 29.64%.

Similar treatment of  $H(CF_2)_2O(CF_2)_2SO_2NSO(1b)$  (3.4 g, 10 mmol) with **2a** (5 ml) gave  $H(CF_2)_2O(CF_2)_2$ -SO<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>OS(O) (**3b**) (2.6 g, b.p. 130 °C/2 mmHg, 68%).

Compound **3b**: IR (film,  $\nu$ , cm<sup>-1</sup>): 2980 (m); 2880 (w, CH<sub>2</sub>); 1380 (vs, SO<sub>2</sub>); 1190 (s, S=O); 1200–1080 (vs, C– F). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 6.33 (t, HCF<sub>2</sub>, <sup>2</sup>J<sub>HF</sub> = 54 Hz); 5.03 (m, CH<sub>2</sub>O); 3.53 (m, NCH<sub>2</sub>) ppm. <sup>19</sup>F NMR  $\delta$ : 8.6 (m, OCF<sub>2</sub>); 15.3 (m, CF<sub>2</sub>O); 43.3 (s, CF<sub>2</sub>S); 65.3 (d, HCF<sub>2</sub>) ppm. MS (*m*/*e*, %): 388 (M<sup>+</sup>H, 2.3); 368 (M<sup>+</sup> – F, 40.2); 352 (M<sup>+</sup> – F – O, 90.0); 324 (M<sup>+</sup>H – SO<sub>2</sub>, 24.9); 101 (HCF<sub>2</sub>CF<sub>2</sub><sup>+</sup>, 57.2); 90 (NCH<sub>2</sub>CH<sub>2</sub>OS, 73.2); 42 (CH<sub>2</sub>CH<sub>2</sub>N<sup>+</sup>, 100.0); Analysis: Calc. for C<sub>6</sub>H<sub>5</sub>F<sub>8</sub>NO<sub>5</sub>S<sub>2</sub>: C, 18.61; H, 1.29; N, 3.62; F, 39.28%. Found: C, 18.50; H, 1.44; N, 3.79; F, 39.00%).

#### 3.2. Reaction of 1 with styrene oxide (2b)

Styrene oxide (**2b**) (1.2 g, 10 mmol) was added dropwise into a 25 ml flask containing a solution of **1a** (4.7 g, 10 mmol) and dry benzene (10 ml) at 0 °C. After addition, the reaction mixture was stirred for another 4 h at room temperature. Column chromatography on silica gel [using petroleum ether/ethyl acetate (9:1) as eluent] gave  $I(CF_2)_2O(CF_2)_2SO_2NCH(C_6H_5)CH_2OS(O)$  (**3c**) (4.5 g, 77%) and  $I(CF_2)_2O(CF_2)_2SO_2NH_2$  (0.3 g, 8%), respectively.

Compound **3c**: M.p. 94–95 °C. IR (KBr,  $\nu$ , cm<sup>-1</sup> –: 2990 (m); 2887 (w); 1380 (s, SO<sub>2</sub>); 1190 (s, S=O); 1210–1100 (vs, C–F); 730 (s); 700 (s). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 7.31 (m, 5H); 4.89 (d–d,  $J_1$ =4.1 Hz,  $J_2$ =5.5 Hz, 1H); 4.13 (d–d,  $J_1$ =4.1 Hz,  $J_3$ =11.7 Hz, 1H); 3.94 (d–d,  $J_2$ =5.5 Hz,  $J_3$ =11.7 Hz, 1H) ppm. <sup>19</sup>F NMR  $\delta$ : –11.5 (s, ICF<sub>2</sub>); 5.0 (m, OCF<sub>2</sub>); 8.5 (m, CF<sub>2</sub>O); 39.5 (s, CF<sub>2</sub>S) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 137.3 (Ar–C); 129.0 (Ar–C); 128.5 (Ar–C); 126.5 (Ar–C); 66.1 (O–C); 60.6 (N–C) ppm. MS (*m/e*, %): 512 (M<sup>+</sup> – SO<sub>2</sub> – CH, 100.0); 462 (M<sup>+</sup> – I, 1.4); 227 (ICF<sub>2</sub>CF<sub>2</sub><sup>+</sup>, 24.5); 104 (M<sup>+</sup> – C<sub>6</sub>H<sub>6</sub> – R<sub>f</sub>, 72.3). Analysis: Calc. for C<sub>12</sub>H<sub>8</sub>F<sub>8</sub>INO<sub>5</sub>S<sub>2</sub>: C, 24.45; H, 1.36; N, 2.38; F, 25.81%. Found: C, 24.40; H, 1.52; N, 2.40; F, 25.66%.

 $H(CF_2)_2O(CF_2)_2SO_2NCH(C_6H_5)CH_2OS(O)$  (3d) was obtained similarly (56%).

Compound 3d: IR (KBr,  $\nu$ , cm<sup>-1</sup>): 2995 (m); 2880 (w, CH<sub>2</sub>); 1375 (s, SO<sub>2</sub>); 1200 (s, S=O); 1200–1100 (vs, C– F); 725 (s); 700 (s). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 7.27 (m, 5H); 6.50 (t, HCF<sub>2</sub>, <sup>2</sup>J<sub>HF</sub>=54 Hz); 6.29 (m, 1H); 4.56 (m, 1H); 3.90 (m, 1H) ppm. <sup>19</sup>F NMR  $\delta$ : 8.5 (m, OCF<sub>2</sub>); 15.3 (m, CF<sub>2</sub>O); 42.9 (s, CF<sub>2</sub>S); 66.8 (d, HCF<sub>2</sub>) ppm. MS (*m/e*, %): 464 (M<sup>+</sup>H, 1.5); 386 (M<sup>+</sup> - SO<sub>2</sub> - CH, 100.0); 101  $(HCF_2CF_2^+, 50.1)$ . Analysis: Calc. for  $C_{12}H_9F_8NO_5S_2$ : C, 31.10; H, 1.94; N, 3.02; F, 32.83%. Found: C, 29.95; H, 1.77; N, 3.13; F, 32.68%.

#### 3.3. Thermolysis of 3c

Compound **3c** (4.0 g, 6.8 mmol) was heated to 160 °C to eliminate a large amount of gas which was identified as  $SO_2$ . The residue was distilled under vacuum to give  $ICF_2CF_2OCF_2CF_2SO_2NCH_2CH(Ph)$  (4) (2.1 g, b.p. 133–135 °C, 58%).

Compound 4: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 7.33 (m, 5H); 4.83 (m, 1H); 2.95 (m, 2H) ppm. <sup>19</sup>F NMR  $\delta$ : – 10.9 (s, ICF<sub>2</sub>); 5.5 (m, OCF<sub>2</sub>); 9.5 (m, CF<sub>2</sub>O); 40.0 (s, CF<sub>2</sub>S) ppm. MS (*m*/*z*, %): 526 (M<sup>+</sup>H, 1.0); 525 (M<sup>+</sup>, 1.7); 449 (M<sup>+</sup>H - C<sub>6</sub>H<sub>5</sub>, 22.1); 227 (ICF<sub>2</sub>CF<sub>2</sub>, 100.0).

## 3.4. Hydrolysis of 3c

A mixture of **4c** (4.0 g, 6.8 mmol) and hydrochloric acid (10%, 10 ml) was stirred for 2 h at room temperature and then extracted with  $Et_2O$  (3×10 ml). After removing the ether, the residual solid was recrystallised from CH<sub>3</sub>CN-CH<sub>3</sub>OH to give I(CF<sub>2</sub>)<sub>2</sub>O(CF<sub>2</sub>)<sub>2</sub>SO<sub>2</sub>NHCH(Ph)CH<sub>2</sub>OH (5) (3.4 g, 91%).

Compound 5: M.p. 103–104 °C. IR (KBr,  $\nu$ , cm<sup>-1</sup>): 3200 (m); 3030 (m); 2883 (w); 1370 (s, SO<sub>2</sub>); 1200–1100 (vs, C–F); 730 (s). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 7.55 (m, 5H); 6.72 (d, NH); 4.78 (m, 1H); 3.94 (m, 1H); 3.83 (m, 1H); 2.62 (broad, OH) ppm. <sup>19</sup>F NMR  $\delta$ : –11.2 (s, ICF<sub>2</sub>); 4.8 (m, OCF<sub>2</sub>); 8.7 (m, CF<sub>2</sub>O); 41.3 (s, CF<sub>2</sub>S) ppm. MS (*m/e*, %): 512 (M<sup>+</sup> – H<sub>2</sub>O – CH, 100.0); 227 (ICF<sub>2</sub>CF<sub>2</sub><sup>+</sup>, 34.0).

# 3.5. Crystal structure data

 $C_{12}H_{10}F_8INO_4S$ : M = 542.2, monoclinic, space group  $P2_1/$ C, a = 5.6200(10), b = 30.557(6), c = 10.396(2) Å,  $\beta = 91.90(3)^{\circ}$ , V = 1784.5(6) Å<sup>3</sup>, Z = 4,  $D_c = 2.018$  g cm<sup>-3</sup>. Absorption coefficient =  $1.982 \text{ mm}^{-1}$ , F(000) = 1044. Radiation, Mo K $\alpha$  ( $\lambda = 0.71073$  Å). Crystal dimensions,  $0.3 \times 0.3 \times 0.4$  mm. Intensity data were collected at 23 °C with a Siemens R3 M/V diffractometer using graphite-monochromated Mo K $\alpha$  radiation. A total of 3142 independent reflections were measured in the range  $4^{\circ} < 2\theta < 50^{\circ}$  with 0 < h < 6, 0 < k < 36, -12 < l < 12. The structure was solved via a direct method using a Siemens SHELXTL PLUS (VMS) system. The position of all H atoms was obtained by theoretical calculations. All positional parameters and anisotropic thermal parameters for non-H atoms were refined by means of a full-matrix least-squares technique. The final R and  $R_w$ values were 0.0689 and 0.0678, respectively, for 2002 observed reflections  $[F > 4.0\sigma(F)]$ . All calculations were performed on a MICRO VAXII computer with SDP, MULTAN 82 and ORTEP programs.

## Acknowledgements

The authors thank the National Natural Science Foundation of China (NNSFC. No. 2947071) for financial support. We also thank Prof. Chenyie Yuan for many stimulating discussions on this work.

# References

 V.S. Etlis, A.P. Sineokov and M.E. Sergeeva, Chem. Heterocycl. Compd. (USSR), 2 (1966) 251.

- [2] F. Yamada, T. Nishiyama, M. Kinugasa and M. Nakatani, Bull. Chem. Soc. Jpn., 43 (1970) 3611.
- [3] T. Nishiyama and F. Yamada, Bull. Chem. Soc. Jpn., 44 (1971) 3073.
- [4] O. Tsuge and S. Mataka, Bull. Chem. Soc. Jpn., 44 (1971) 1896.
- [5] S.Z. Zhu and Q.Y. Chen, J. Chem. Soc., Chem. Commun., (1991) 732.
- [6] S.Z. Zhu, A.W. Li, B. Xu and C. Wang, J. Fluorine Chem., 69 (1994) 85.
- [6] S.Z. Zhu, to be published.
- [8] S.Z. Zhu, J. Chem. Soc., Perkin Trans. 1 (1994) 2075.
- [9] S.Z. Zhu and A.W. Li, Chin. Chem. Lett., 3 (1992) 703.