LETTER TO THE EDITOR

Formation of Novel Molybdenum and Tungsten Sulfides by Reduction of MoS₂ and WS₂: A New Route to Chevrel Phases*

K. S. NANJUNDASWAMY AND J. GOPALAKRISHNAN+

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Communicated by C. N. R. Rao, December 5, 1986

Pt-catalyzed hydrogen reduction of MoS_2 and WS_2 at $1000-1050^{\circ}C$ yields new metal-rich sulfides $M_{21}S_8$ and $M_{14}S_5$ (M=Mo or W). The reduction of MoS_2 proceeds via the intermediate Mo_6S_8 . Chevrel phases, $Cu_xMo_6S_8$ (x < 4.0) and $Ni_2Mo_6S_8$, are readily prepared by hydrogen reduction of MoS_2 in the presence of the ternary metal. © 1987 Academic Press, Inc.

Introduction

A number of binary sulfides have been reported in the Mo-S system of which MoS₂ (hexagonal and rhombohedral), Mo₂S₃, and Mo₆S₈ are well-characterized (1-3). Of these, Mo₆S₈ which constitutes the host material for the Chevrel phases can only be prepared by indirect means (4, 5). WS₂ is the only well-characterized binary sulfide in the W-S system (2, 3). In addition to these crystalline sulfides both molybdenum and tungsten form amorphous trisulfides (6, 7). Chemically speaking, it is possible to envisage the formation of lowervalence molybdenum and tungsten sulfides starting from MoS₂ and WS₂ by a reduction process. For example, Mo₆S₈ may be considered to be formed by

$$6\text{MoS}_2 + 4\text{H}_2 \rightarrow \text{Mo}_6\text{S}_8 + 4\text{H}_2\text{S}.$$

We explored the possibility of synthesizing lower-valence molybdenum and tungsten sulfides by reduction of MoS₂ and WS₂. Because it is known that MoS₂ and WS₂ do not undergo reduction in hydrogen readily (2, 3). we investigated the reduction reaction in the presence of a platinum catalyst. Platinum is known to act as a catalyst in hydrogen-reduction reactions by a spillover mechanism (8). In this communication, we describe the formation of novel metal-rich sulfides of molybdenum and tungsten including Mo₆S₈ during the platinum-catalyzed hydrogen reduction of MoS₂ and WS₂ at 1000-1050°C. The investigations have enabled us to develop a new method for the synthesis of Chevrel phases.

^{*} Contribution No. 393 from the Solid State and Structural Chemistry Unit.

⁺ To whom all correspondence should be addressed.

¹ MoS₂ and WS₂, however, undergo reduction in hydrogen in the presence of alkali metals to give reduced products; see for example M. Sergent and J. Prigent (C. R. Acad. Sci. Paris 261, 5135 (1965)) and R. J. Behlok and W. R. Robinson (Mater. Res. Bull. 18, 1069 (1983)).

Experimental

MoS₂ and WS₂ were prepared by thermal decomposition of ammonium tetrathiometallates at $\sim 900^{\circ}$ C in a stream of H₂S (6, 7). Powder X-ray diffraction patterns were similar to the 2H forms of MoS₂ and WS₂ reported in the literature (9). The disulfides (~ 2 g) dispersed with 1 at% of Pt (in the form of H₂PtCl₆ in ethanol) were reduced at elevated temperatures in a stream of pure and dry hydrogen (flow rate ~ 3 ml/min).

The reaction was monitored by weight loss and X-ray powder diffractometry. A JEOL JDX-8P X-ray powder diffractometer equipped with $CuK\alpha$ radiation was used to record the patterns.

For the synthesis of Chevrel phases, the ternary metal (Cu/Ni) was mixed with MoS₂ (dispersed with Pt) in the required stoichiometry and the mixture reduced in hydrogen. Chemical compositions of the lower-valence sulfides formed by reduction were determined by quantitative analysis of

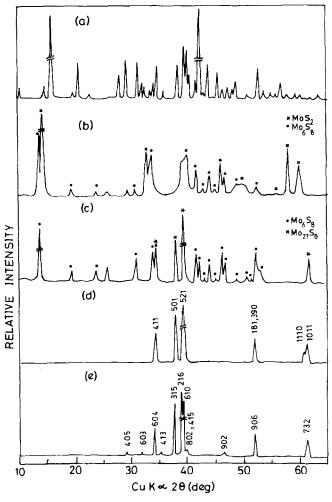


Fig. 1. X-ray powder diffraction patterns of the hydrogen-reduction products of $MoS_2 + 1$ at% Pt. (a) Mo_2S_3 formed at 850°C, 3 days; (b) $Mo_6S_8 + MoS_2$ formed at 1000°C, 3 days; (c) $Mo_6S_8 + MoS_2$ formed at 1000°C, 5 days; (d) Mo_2S_8 formed at 1000°C, 6 days; (e) Mo_1S_8 formed at 1000°C, 8 days.

sulfur and Mo/W. Sulfur was determined as BaSO₄ after oxidizing the samples with Br₂ in CCl₄ followed by a treatment with concentrated HNO₃. Mo and W were determined by standard methods (10).

Results and Discussion

Preliminary experiments showed that pure MoS₂ and WS₂ did not undergo reduction up to 1000°C. In the presence of a platinum catalyst, reduction of MoS₂ starts around 850°C, yielding Mo₂S₃ (Fig. 1). Continued reduction at this temperature results in the formation of molybdenum metal. More interestingly, when the reduction is carried out at 1000°C, we see the formation of Mo₆S₈ (Fig. 1). We could not, however, prepare pure Mo₆S₈ by this method, since continued reduction at this temperature yields other metal-rich sulfides. We have identified two metal-rich sulfides, one with a S/Mo ratio of 0.385 and the other with a ratio of 0.350 (Table I). The X-ray pattern of the first phase (Fig. 1) is indexable on a tetragonal cell with a = 16.76 and c = 3.35Å, indicating that it is probably isostructural with $Nb_{21}S_8$ (11). The diffraction pat-

TABLE I REDUCTION OF MoS_2 and WS_2 in Presence of Platinum (1 atom %) by Hydrogen

Product	Reaction conditions (°C/days)	Weight loss (%)	S/M ratio	Lattice parameters (Å)
Mo ₂ S ₃	850/3	10.2	1.504	Monoclinic: a = 6.09, b = 3.21, $c = 8.63, \beta = 102.4^{\circ}$
$Mo_6S_8 + MoS_2$	1000/3			
$Mo_6S_8 + Mo_{21}S_8$	1000/5	_	_	_
$Mo_{21}S_8$	1000/6	32.0	0.385	Tetragonal: $a = 16.76, c = 3.35$
$Mo_{14}S_5$	1000/8	32.8	0.350	Orthorhombic: $a = 18.48, b = 3.37, c = 19.79$
$W_{21}S_8$	1050/8	21.0	0.384	Tetragonal: $a = 16.77, b = 3.35$
W ₁₄ S ₅	1050/10	21.4	0.351	Orthorhombic: a = 18.48, b = 3.37, c = 19.80

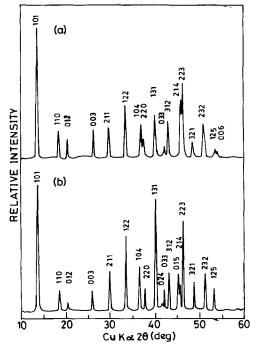


Fig. 2. X-ray powder diffraction patterns of (a) Cu_{3.6}Mo₆S₈ and (b) Ni₂Mo₆S₈.

tern of the second phase is indexable on an orthorhombic cell with a = 18.48, b = 3.37, and c = 19.79 Å, revealing that it may be similar to Nb₁₄S₅ (12). Reduction of WS₂ in presence of platinum at 1050°C proceeds directly to give metal-rich W₂₁S₈ and W₁₄S₅ (Table I). We see no evidence for the formation of W₂S₃ or W₆S₈.

The structures of both Nb₂₁S₈ and Nb₁₄S₅ are derived by condensation of the octahedral Nb₆S₈ units (13). Since the reduction of MoS₂ and WS₂ in the presence of platinum catalyst yields products that are isostructural with Nb₂₁S₈ and Nb₁₄S₅, it is most likely that the reduction proceeds via the formation of intermediate M₆S₈ clusters which condense further to give metal-rich sulfides on removal of sulfur. The formation of Mo₆S₈ during the reduction of MoS₂ is of special significance because direct synthesis of this sulfide from the elements is not possible. Moreover, it has been claimed

(14) that Mo_6S_8 prepared by indirect methods is unstable above 450°C.

The formation of Mo_6S_8 during the reduction of MoS_2 suggested that it may be possible to synthesize $M_xMo_6S_8$ Chevrel phases by the hydrogen-reduction route. Accordingly, we could prepare $Cu_{3.6}Mo_6S_8$, $Cu_2Mo_6S_8$, and $Ni_2Mo_6S_8$ by reacting appropriate mixtures of Cu/Ni and MoS_2 (dispersed with 1 at% Pt) in hydrogen at 1000° C for 2 days. The powder diffraction patterns of the products (Fig. 2) are identical to those of the corresponding Chevrel phases reported in the literature (5, 15, 16). The method is potentially useful for the synthesis of a wide variety of Chevrel phases.

Acknowledgments

We thank Professor C. N. R. Rao, F. R. S., for valuable advice and encouragement. Thanks are also due to the University Grants Commission, New Delhi, and the Department of Science and Technology, Government of India, for support of this research.

References

- C. N. R. RAO AND K. P. R. PISHARODY, Progr. Solid State Chem. 10, 207 (1976).
- 2. G. A. TSIGDINOS, in "Topics in Current Chemis-

- try," Vol. 76, p. 65, Springer-Verlag, Berlin (1978).
- 3. G. H. Moh, in "Topics in Current Chemistry," Vol. 76, p. 107, Springer-Verlag, Berlin (1978).
- R. CHEVREL, M. SERGENT, AND J. PRIGENT, Mater. Res. Bull. 9, 1487 (1974).
- J. M. TARASCON, J. V. WASZCZAK, G. W. HULL, JR., F. J. DISALVO, AND L. D. BLITZER, Solid State Commun. 47, 973 (1983).
- J. C. WILDERVANCK AND F. JELLINEK, Z. Anorg. Allg. Chem. 328, 309 (1964).
- R. J. H. VOORHOEVE AND H. B. M. WOLTERS, Z. Anorg. Allg. Chem. 376, 165 (1970).
- P. A. SERMON AND G. C. BOND, Catal. Rev. 8, 211 (1974).
- ASTM Powder Diffraction File, Card Nos. 6-0097, 8-237, and 9-312.
- 10. J. BASSETT, R. C. DENNEY, G. H. JEFFERY, AND J. MENDHAM, "Vogels' Textbook of Quantitative Inorganic Analysis," 4th ed., pp. 472, 486, and 509, Longman Group Limited, London (1978).
- H. F. FRANZEN, T. A. BEINEKE, AND B. R. CON-RAD, Acta Crystallogr. Sect. B 24, 412 (1968).
- H. Y. CHEN, R. T. TUENGE, AND H. F. FRANZEN, Inorg. Chem. 12, 552 (1973).
- A. SIMON, Angew. Chem. Int. Ed. Engl. 20, 1 (1981).
- 14. R. J. BEHLOK, M. L. KULLBERG, AND W. R. ROBINSON, in "Proceedings, Fourth International Conference on Chemistry and Uses of Molybdenum" (H. F. Barry and P. C. H. Mitchell, Eds.), Climax Molybdenum Co., Ann Arbor, MI (1982).
- K. Yvon, in "Current Popics in Materials Science" (E. Kaldis, Ed.), Vol. 3, North-Holland, Amsterdam (1979).
- 16. A. C. LAWSON, Mater Res. Bull. 7, 773 (1972).