Tetrahedron Letters 55 (2014) 2738-2741

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Synthesis of maresin 1 and (7S)-isomer

# Narihito Ogawa, Toshifumi Tojo, Yuichi Kobayashi\*

Department of Bioengineering, Tokyo Institute of Technology, Box B52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan

## ARTICLE INFO

# ABSTRACT

of the racemic alcohol, respectively.

Article history: Received 30 December 2013 Revised 9 March 2014 Accepted 13 March 2014 Available online 20 March 2014

Keywords: Maresin 1 Stereoselective synthesis Suzuki-Miyaura coupling Lipid mediator Docosahexaenoic acid

Maresin 1 is a metabolite of DHA by macrophage<sup>1</sup> and is a potent mediator that inhibits PMN infiltration, stimulates macrophage phagocytosis of apoptotic cells, and controls pain. These properties are similar to resolvins E1 and E2.<sup>2,3</sup> The structure including the olefin geometry and the absolute configuration of the chiral carbons has been determined as depicted in Figure 1 (1a).<sup>2</sup> Previously, two syntheses of maresin 1 have been reported. Asymmetric addition of alkyne to aldehyde and Julia-Kocienski olefination were the key reactions in constructing the C14 chiral carbon and the conjugated triene unit; however, these reactions suffer from low stereoselectivity.<sup>4a</sup> Sonogashira coupling gave the dehydro-derivative of the conjugated triene, and the acetylene part was reduced to cis olefin by using Zn(Cu/Ag) followed by HPLC separation.<sup>4b</sup> Although the full structure, including the chiral carbons, is unambiguously determined, the 7S isomer shows comparable activity in blocking neutrophil infiltration in the acute peritonitis model, suggesting that further study is necessary to establish the biochemical properties of maresin 1.<sup>4a</sup> However, availability is limited to the abovementioned syntheses and commercial supply is extremely expensive.<sup>5</sup> Therefore, we investigated the synthesis of maresin 1 (1a) and its (7S)-isomer (1b) and described the results herein.

Based on a successful strategy for the synthesis of the resolvins,<sup>6</sup> we envisaged a Suzuki–Miyaura coupling<sup>7</sup> of vinylborane **2** with iodide (R)-**3** for the synthesis of **1a** as delineated in Scheme **1**. Borane **2** was in turn conceived to be synthesized from the *cis* olefin aldehyde **4** by Wittig reaction followed by Sonogashira coupling

# ОН ОН ОН СООН

Maresin 1 (with the 7R carbon) and (7S)-maresin 1 were synthesized stereoselectively. The conjugated

triene system was constructed by Pd-catalyzed coupling of the trans cis-dienylborane (the C10-C22 part)

with the trans vinyl iodide corresponding to the C1-C9 part. The stereogenic centers at C7 and C14 were

created by Ru-catalyzed asymmetric reduction of ketone and asymmetric epoxidation/kinetic resolution

maresin 1 (1a)

Figure 1. Structures of Maresin 1 and (7S)-maresin 1.

with an acetylene (an ethyne equivalent) and subsequent hydroboration. For the synthesis of **4**, two methods consisting of the Stork–Wittig reaction of **5** and Peterson elimination of the dibromide derived from aldehyde **6** were planned. The use of (*S*)-**3** should furnish the (7*S*)-isomer **1b**.

Results of the Stork–Wittig<sup>8</sup> approach to iodide **4a** (X = I, R = TBDPS) are summarized in Scheme 2. Methyl ester **8** was synthesized from malic acid according to the procedure reported in the literature<sup>9</sup> and converted to aldehyde **5** (R = TBDPS) by reduction with DIBAL followed by TPAP-catalyzed oxidation of the resulting alcohol in 80% yield. The key Stork–Wittig reaction was initiated by adding the aldehyde to the ylide prepared from [Ph<sub>3</sub>PCH<sub>2</sub>I]<sup>+</sup>I<sup>-</sup> and KHMDS in THF/HMPA at –100 °C and the reaction temperature was gradually raised to 0 °C to afford **9**, which afforded iodide **4a** upon deprotection of the TBS group followed by oxidation. The cis selectivity of this iodide synthesized several times was ca. 90% on average and 94% at maximum.<sup>10</sup> The *trans* isomer was not separated by routine chromatography at this stage





etrahedro



© 2014 Elsevier Ltd. All rights reserved.

(7S)-maresin 1 (1b)

<sup>\*</sup> Corresponding author. Tel./fax: +81 45 924 5789. E-mail address: ykobayas@bio.titech.ac.jp (Y. Kobayashi).



Scheme 1. Retrosynthetic analysis of maresin 1. Use of the enantiomer of (R)-3 should produce (75)-maresin 1 (1b).



Scheme 2. Synthesis of iodide 4a through Stork-Wittig reaction.

or at later stages of the conversion, leading to the borane intermediate **2** (scheme not shown). Therefore, we investigated a second route through **6**.

As delineated in Scheme 3, synthesis of **4b** (X = Br, R = TBS) began with the addition of enolate derived from  $CH_3CO_2$ -*n*-Bu to aldehyde **10**<sup>11</sup> according to a previously reported method.<sup>12</sup> The resulting racemic alcohol was subjected to kinetic resolution/asymmetric

epoxidation to afford a mixture of **11** (98% ee)<sup>13</sup> and the epoxide 12. These products were separated easily by routine chromatography on silica gel. Bromination of alcohol 11 (equivalent to 6) at -78 °C followed by Peterson elimination with TBAF afforded cis bromide **13**. The <sup>1</sup>H NMR signals corresponding to the trans isomer were not observed at the expected region. The alcohol part of 13 was protected as TBS ether in 63% yield from 11 (3 steps), and DIBAL reduction of the ether 14 at -78 °C afforded aldehyde 4b cleanly. Further transformation of **4b** to the intermediate **18**, which is the precursor of the vinylborane 2, is summarized in Scheme 3. Aldehyde **4b** was subjected to the Wittig reaction with the vlide derived from 15<sup>14</sup> and NaHMDS in THF to afford 16 in 71% yield. Sonogashira coupling of 16 with TMS-acetylene (17) under standard conditions followed by desilvlation produced envne 18, which was shown to be highly clean by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, proving exclusive formation of the cis olefin at C16.

Synthesis of the C1–C9 intermediate (*R*)-**3** was accomplished by the method delineated in Scheme 4. Ketone **19** was prepared from propane-1,3-diol in four steps and subjected to the Ru-catalyzed asymmetric reduction in *i*-PrOH.<sup>15</sup> The alcohol (*R*)-**20** (98% ee)<sup>13</sup> obtained in 96% yield was transformed to (*R*)-**21** in two steps as indicated. Hydrozirconation of (*R*)-**21** with Cp<sub>2</sub>Zr(H)Cl generated in situ from Cp<sub>2</sub>ZrCl<sub>2</sub> and DIBAL<sup>16</sup> followed by iodination of the resulting vinylzirconium species with I<sub>2</sub> produced vinyliodide (*R*)-**22**, which upon deprotection of the TBS group under slightly acidic conditions afforded the intermediary alcohol (*R*)-**7** in 58% from (*R*)-**20**. Oxidation of (*R*)-**7** was followed by Wittig reaction of the resulting aldehyde with the ylide derived from Br<sup>-</sup>[Ph<sub>3</sub>P(CH<sub>2</sub>)<sub>3</sub>CO<sub>2</sub>H]<sup>+</sup> and afforded (*R*)-**23** in 73% yield after methylation with CH<sub>2</sub>N<sub>2</sub>. Finally,



Scheme 3. Synthesis of bromide 4b through Peterson elimination, and further transformation to 18, the precursor of 2.



Scheme 4. Synthesis of the intermediates (R)- and (S)-3. (a) Ru cat. = Ru[(R,R)-TsDPEN](p-cymene) or the (S,S)-isomer.



26, 61% (2 steps)

Scheme 5. Final stage of maresins 1 synthesis.

deprotection of the TBDPS ether afforded alcohol (R)-**3** in good yield. The *Z* selectivity of this Wittig reaction was determined to be 95% by <sup>1</sup>H NMR spectroscopy, and the selectivity in the repeated reaction was ca. 90–95%. Fortunately, the purity was improved by preparative HPLC for the final stage of the synthesis.

As shown in Scheme 5, hydroboration of enyne 18 with freshly prepared Sia<sub>2</sub>BH gave vinylborane **2** (R = TBS) in THF (0 °C, 30 min). The coupling reaction of iodide (R)-3 (1 equiv) with 2 (1.5 equiv) was set up in the presence of  $Pd(PPh_3)_4$  (10 mol %) and 2 N NaOH (10 equiv) in THF and H<sub>2</sub>O (14:1) and conducted at rt for 1 h to prevent hydrolysis. The crude product 24 was passed through a short column of silica gel to eliminate most of the reagent residue.<sup>17</sup> Desilylation of **24** with TBAF afforded diol **25**, and the spectral data (<sup>1</sup>H and <sup>13</sup>C NMR in CDCl<sub>3</sub> and in CD<sub>3</sub>CN; UV)<sup>18</sup> were consistent with those previously reported.<sup>4b</sup> Finally, hydrolysis furnished maresin 1 (1a) in 68% yield. The spectral data (NMR and UV) and  $[\alpha]_{\rm D}$  were again consistent with those reported.<sup>4a,b</sup> Similarly, (7S)maresin 1 (1b) was synthesized through 26 in an overall yield comparable to that of **1a**. Spectroscopic data and  $[\alpha]_D$  are attached in the ref<sup>18</sup> and copies of the spectra are attached to the Supplementary material.

In summary, maresin 1 and (7*S*)-maresin 1 were synthesized in a highly stereoselective manner in 13.5% and 16.6% yields, respectively, over 12 steps from ketone **19**. The method presented herein complements those reported previously; these methods will be useful for the synthesis of structural analogues for biochemical studies, such as structure–activity relationships.

## Acknowledgments

Plasticizer-free silica gel was kindly provided by Fuji Silysia, Japan. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

### Supplementary data

Supplementary data (<sup>1</sup>H NMR, <sup>13</sup>C-APT NMR, (and UV) of **18**, (R)-**20**, (R)-**3**, **25**, **1a**, **26**, **1b**) associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/j.tetlet. 2014.03.065.

#### **References and notes**

- (a) Serhan, C. N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P. S.; Porter, T. F.; Oh, S. F.; Spite, M. J. Exp. Med. **2009**, 206, 15–23; (b) Dalli, J.; Zhu, M.; Vlasenko, N. A.; Deng, B.; Haeggström, J. Z.; Petasis, N. A.; Serhan, C. N. FASEB J. **2013**, 27, 2573–2583; (c) Marcon, R.; Bento, A. F.; Dutra, R. C.; Bicca, M. A.; Leite, D. F. P.; Calixto, J. B. J. Immunol. **2013**, 191, 4288–4298.
- Serhan, C. N.; Dalli, J.; Karamnov, S.; Choi, A.; Park, C.-K.; Xu, Z.-Z.; Ji, R.-R.; Zhu, M.; Petasis, N. A. FASEB J. 2012, 26, 1755–1765.
- (a) Li, Y.; Dalli, J.; Chiang, N.; Baron, R. M.; Quintana, C.; Serhan, C. N. *Immunity* 2013, 39, 885–898; (b) Lee, C. H. Arch. Pharm. Res. 2012, 35, 3–7; (c) Stables, M. J.; Gilroy, D. W. Prog. Lipid Res. 2011, 50, 35–51.
- (a) Sasaki, K.; Urabe, D.; Arai, H.; Arita, M.; Inoue, M. Chem. Asian J. 2011, 6, 534–543; (b) Rodriguez, A. R.; Spur, B. W. Tetrahedron Lett. 2012, 53, 4169– 4172.
- 5. Available from Cayman Chemical and Cayman Europe.
- (a) Ogawa, N.; Kobayashi, Y. Tetrahedron Lett. 2009, 50, 6079–6082; (b) Kosaki, Y.; Ogawa, N.; Kobayashi, Y. Tetrahedron Lett. 2010, 51, 1856–1859; (c) Ogawa, N.; Kobayashi, Y. Tetrahedron Lett. 2011, 52, 3001–3004.
- (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972–980; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
- 8. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173–2174.
- Álvarez, C.; Pérez, M.; Zúñiga, A.; Gómez, G.; Fall, Y. Synthesis 2010, 22, 3883– 3890.
- 10. The Z/E ratios obtained with NaHMDS at temperatures (in 10:1 THF/HMPA): 75:25, -78 °C; 90:10, -100 °C.
- 11. Jung, M. E.; Gaede, B. Tetrahedron 1979, 35, 621–625.
- 12. Kobayashi, Y.; Yoshida, S.; Nakayama, Y. Eur. J. Org. Chem. 2001, 1873–1881.
- 13. Determined by <sup>1</sup>H NMR of the derived MTPA ester.
- Prepared from leaf alcohol (EtCH= CH(CH<sub>2</sub>)<sub>2</sub>OH) quantitatively by iodination (I<sub>2</sub>, PPh<sub>3</sub>, imidazole) followed by reaction with Ph<sub>3</sub>P in MeCN (reflux). The literature procedure [(1) TsCl, (2) Nal, (3) PPh<sub>3</sub>], in our hand, suffered from low reproducibility in yield (a) Kojima, K.; Koyama, K.; Amemiya, S. *Tetrahedron* **1985**, 41, 4449–4462; (b) Kim, S.; Lawson, J. A.; Praticò, D.; FitzGerald, G. A.; Rokach, J. *Tetrahedron Lett.* **2002**, 43, 2801–2805.
- 15. Hartmann, O.; Kalesse, M. Org. Lett. 2012, 14, 3064-3067.
- Preparation of Cp<sub>2</sub>Zr(H)Cl from Cp<sub>2</sub>ZrCl<sub>2</sub> and DIBAL: (a) Huang, Z.; Negishi, E. Org. Lett. 2006, 8, 3675–3678; (b) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2002, 43, 2725–2729.
- 17. Coupling of the TBDPS ether of (S)-3, that is, (S)-23, with 2 (R = TBS) gave a mixture of the coupling product and the reagent residue. Because these products were less polar with similar R<sub>f</sub> values on TLC, separation of the products were partially successful.
- 18. *Methyl ester* **25**: To an ice-cold solution of enyne **18** (33.2 mg, 0.109 mmol) in THF (5 mL) was added freshly prepared Sia<sub>2</sub>BH (0.50 M in THF, 0.29 mL, 0.145 mmol). The solution was stirred at 0 °C for 30 min, and aqueous 2 N NaOH (0.36 mL, 0.727 mmol) and a solution of iodide (*R*)-**3** (22.5 mg, 0.0727 mmol) in THF (1 mL) were added. Argon was bubbled into the reaction mixture for 15 min and then Pd(PPh<sub>3</sub>)<sub>4</sub> (8.4 mg, 0.00727 mmol) was added. The mixture was stirred at room temperature for 1 h, and diluted with saturated NH<sub>4</sub>Cl. The resulting mixture was extracted with EtOAc twice. The combined extracts were washed with brine, dried over MgSO<sub>4</sub>, and concentrated to afford a residue, which was purified by chromatography on silica gel (Fiji Silysia, BW-200, hexane/EtOAc) to give triene **24**. To a solution of

the above triene in THF (5 mL) was added TBAF (1.0 M in THF, 0.10 mL, 0.10 mmol). The mixture was stirred at room temperature for 7 h, and diluted with McIlvaine's phosphate buffer (pH 5.0). The resulting mixture was extracted with CH2Cl2 three times. The combined extracts were washed with brine, dried over MgSO<sub>4</sub>, and concentrated. The residue was purified by chromatography on silica gel (Fiji Silysia, BW-200, Et<sub>2</sub>O) to give alcohol **25** (15.9 mg, 57% over 2 steps);  $[\alpha]_D^{20} - 31 (c \ 0.23, CHCl_3)$ ; UV (EtOH)  $\lambda_{max} 262, 271$ , 282 nm; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 0.97 (t, J = 7.5 Hz, 3H), 1.6–1.9 (br s, 2H), 2.07 (quint, J = 7.5 Hz, 2H), 2.22–2.51 (m, 8H), 2.82 (t, J = 7 Hz, 2H), 3.67 (s, 3H), 4.24 (q, J = 6.5 Hz, 1H), 4.62 (dt, J = 8, 6.5 Hz, 1H), 5.24–5.62 (m, 7H), 5.79 (dd, J = 14, 6.5 Hz, 1H), 6.10 (t, J = 11 Hz, 1H), 6.24 (dd, J = 14, 11 Hz, 1H), 6.33 (dd, J = 14, 11 Hz, 1H), 6.51 (dd, J = 14, 12 Hz, 1H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  14.3 (+), 20.7 (-), 22.8 (-), 25.8 (-), 33.7 (-), 35.4 (-), 35.5 (-), 51.8 (+), 67.7 (+), 71.7 (+), 124.5 (+), 126.2 (+), 126.8 (+), 127.7 (+), 130.20 (+), 130.24 (+), 131.2 (+), 131.8 (+), 132.3 (+), 133.4 (+), 134.0 (+), 136.7 (+), 173.8 (-); <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>CN) δ 0.90 (t, J = 7.5 Hz, 3H), 2.02 (quint, J = 7.5 Hz, 2H), 2.08-2.36 (m, 8H), 2.74 (t, J = 6.5 Hz, 2H), 2.86 (d, J = 4.5 Hz, 1H), 2.92 (d, J = 4.5 Hz, 1H), 3.56 (s, 3H), 4.06 (quint, J = 6 Hz, 1H), 4.43-4.55 (m, 1H), 5.20-5.46 (m, 7H), 5.70 (d, J = 14, 6.5 Hz, 1H), 5.99 (t, J = 11 Hz, 1H), 6.13–6.28 (m, 2H), 6.40–6.58 (m, 1H);  $^{13}$ C NMR (75 MHz, CD<sub>3</sub>CN)  $\delta$  14.6 (+), 21.1 (–), 23.6 (–), 26.3 (–), 34.3 (-), 36.0 (-), 36.2 (-), 51.9 (+), 67.9 (+), 72.1 (+), 126.3 (+), 127.6 (+), 128.0 (+), 128.7 (+), 129.7 (+), 130.3 (+), 130.8 (+), 131.0 (+), 132.6 (+), 134.4 (+), 135.5 (+), 138.5 (+), 174.3 (–); HRMS (FAB) calcd for C<sub>23</sub>H<sub>34</sub>O<sub>4</sub> 374.2457 [M<sup>+</sup>], found 374.2465

*Maresin 1* (**1a**): To a solution of **25** (7.6 mg, 0.0203 mmol) in MeOH (1 mL) was added aqueous 1 N LiOH (1.0 mL, 1.0 mmol). The mixture was stirred at room temperature for 2 h and diluted with McIlvaine's phosphate buffer (pH 5.0). The resulting mixture was extracted with Et<sub>2</sub>O approximately 5 times. The combined extracts were washed with brine, dried over MgSO<sub>4</sub>, and concentrated. The residue was purified by chromatography on silica gel (Fiji Silysia, BW-200, Et<sub>2</sub>O) to give marcesin 1 (**1a**) (5.0 mg, 68%);  $[x]_D^{20}$  -25 (c 0.18, MeOH); cf. lit.<sup>4a</sup>  $[x]_D^{20}$  -31 (c 0.19, MeOH); UV (EtOH)  $\lambda_{max}$  260, 271, 281 nm; <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD)  $\delta$  0.96 (t, J = 7.5 Hz, 3H), 2.07 (quint, J = 7.5 Hz, 2H), 2.16–2.45 (m, 8H), 2.79 (t, J = 6.0 Hz, 2H), 4.07–4.18 (m, 1H), 4.51–4.62 (m, 1H), 5.2–5.54 (m, 7H), 5.74 (dd, J = 14, 6.5 Hz, 1H), 6.07 (t, J = 11 Hz, 1H), 6.17–6.36 (m, 2H), 6.44–6.60 (m, 1H); <sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD)  $\delta$  14.7, 21.5, 24.0, 26.6, (34.9, 36.2, 36.5, 68.5, 73.0, 126.1, 127.75, 128.2, 128.9, 130.6, 131.1, 131.3, 131.4, 132.8, 134.8, 135.0, 137.0; HRMS (FAB) calcd for C<sub>22</sub>H<sub>31</sub>O<sub>4</sub> (5.0 Hz), 2.02 (27 +1), 6.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.02 (27 +1), 2.0

Methyl ester **26**:  $[\varkappa]_{22}^{52} - 14$  (c 0.19, CHCl<sub>3</sub>); UV (EtOH)  $\lambda_{max}$  262, 271, 282 nm; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.97 (t, *J* = 7.5 Hz, 3H), 1.5–1.7 (br s, 1H), 1.9–2.1 (br s, 1H), 2.07 (quint, *J* = 7.5 Hz, 2H), 2.16–2.50 (m, 8H), 2.82 (t, *J* = 7 Hz, 2H), 3.67 (s, 3H), 4.24 (q, *J* = 6 Hz, 1H), 4.62 (q, *J* = 7, 1H), 5.24–5.62 (m, 7H), 5.79 (dd, *J* = 14, 1H Hz, 1H), 6.10 (t, *J* = 11.5 Hz, 1H), 6.26 (dd, *J* = 14, 11 Hz, 1H), 6.32 (dd, *J* = 14, 11 Hz, 1H), 6.51 (dd, *J* = 14, 11 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  14.3 (+), 20.7 (-), 22.8 (-), 25.8 (-), 33.7 (-), 35.4 (-), 35.5 (-), 51.8 (+), 67.7 (+), 71.7 (+), 124.5 (+), 126.2 (+), 126.8 (+), 127.7 (+), 130.20 (+), 130.24 (+), 131.2 (+), 131.8 (+), 133.4 (+), 134.0 (+), 136.7 (+), 173.8 (-); HRMS (FAB) calcd for C<sub>23</sub>H<sub>34</sub>O<sub>4</sub> 374.2457 [M<sup>+</sup>], found 374.2459.

The form that the form of the form of the form of the form of the form that the form that the form th