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Abstract: A new reaction of aryl 2,3-epoxy esters with 2-amino-
pyridines has been developed that involves multiple C–O/C–N
bond-breaking/formation reactions in one chemical step. Compared
with known reactions of α,β-epoxy esters, which take place through
oxiranyl C–O or C–C bond cleavage, the present reaction exploits
the tendency of the oxirane ring to act as a bi-electrophile. Thus, the
reaction follows a unique cascade pathway of epoxide C–O bond
cleavage, formation of an α-enamine ester, and intramolecular
transamidation with chemo-, regio- and diastereoselectivity. The re-
action allows access to biologically relevant (Z)-2-methyleneimid-
azo[1,2-a]pyridin-3-ones. Water and ethanol are the only by-
products. The reaction is flexible, and aryl 2,3-epoxy esters as well
as 2-aminopyridines possessing either electron-donating or -with-
drawing functionalities, can be used. In contrast to various Brønsted
and Lewis acid catalysts, polyphosphoric acid plays a multifunc-
tional role in this intermolecular cascade reaction. 

Key words: domino reactions, amino alcohols, epoxides, hetero-
cycles, fused-ring systems

Oxiranes are important building blocks in organic synthe-
sis because of their easy accessibility, their propensity for
opening of the strained ring, and because of their use in
the preparation of versatile organic motifs. Most ring-
opening reactions of oxiranes involve C–O bond cleav-
age, although C–C bond cleavage is also known. The cas-
cade reaction1 involving epoxide C–O bond cleavage in
the synthesis of polycyclic natural products is well
known.2 In the context of exploring the use of the oxirane
class of compounds for various reactions, the 2,3-epoxy
esters/ketones have attracted significant attention because
of their use as multifunctional substrates3 and because of
their ease of preparation.4 A remarkable example is the re-
action of glycidic ester with 2-aminothiophenol, which
provides 1,4-benzothiazepinone, a synthetic precursor of
calcium channel blocker drug diltiazem.5 Aryl oxiranyl-
carboxylates/ketones undergo interesting C–C bond het-
erolysis of the oxirane ring, generating carbonyl ylides6

that undergo dipolar cycloaddition with various π-sys-
tems. For example, the [3+2] cycloaddition of aryl oxira-
nyl-dicarboxylate/diketone/cyanoketone with indole,7

alkyne,8 or [60]fullerene9 furnishes furo[3,4-b]indole,
2,5-dihydrofuran, or C60-fused tetrahydrofuran, respec-

tively. Other significant applications of 2,3-epoxy es-
ters/ketones include [3+2] heterocyclization for the
construction of quaternary imidazole skeletons,10 palladi-
um(0)-catalyzed transformation into β-diketone,11 and
SmI2-mediated deoxygenation to produce the α,β-unsatu-
rated ester.12 Herein, we report a new reaction of aryl α,β-
epoxy esters with 2-aminopyridines that exploits the ten-
dency of the oxirane ring to act as a bi-electrophile. The
reaction involves a cascade pathway of epoxide C–O bond
cleavage, formation of α-enamine ester, and intramolecu-
lar transamidation with chemo-, regio- and diastereoselec-
tivity. The approach allows access to biologically relevant
(Z)-2-methyleneimidazo[1,2-a]pyridin-3-one. 

(Z)-2-Methyleneimidazo[1,2-a]pyridin-3-ones represent
a scaffold-hopped13 skeleton of aurones, which are a fla-
vonoid class of natural products that exhibit various
bioactivities14 including antitumor, antimicrobial, anti-in-
flammatory, antidiabetic and anti-Alzheimer’s activities,
and modulation of drug efflux.15 In addition, (Z)-2-meth-
ylene- and 3-keto-substituted imidazo[1,2-a]heterocycles
are important chromophore-substrates for biolumines-
cence in marine organisms.16 Consequently, the develop-
ment of efficient syntheses of these molecules is
considered valuable. 

To develop reactions that can be used for the preparation
of bioactive natural flavonoid compounds, we considered
a new reaction of easily accessible α,β-epoxy esters and 2-
aminopyridine. Initial experiments with a model reaction
of ethyl 3-(4′-methoxyphenyl)oxirane-2-carboxylate and
2-aminopyridine were performed by using several Lewis
acid catalysts and conditions known for oxirane C–O
opening with amines.17 All of these conditions led to the
formation of inseparable mixtures of products, which
indicated multiple competing reactions.18 Catalysis by
p-TsOH produced a less complex mixture of products
from which one major product was isolated (Table 1, en-
try 1). Spectroscopic studies revealed that the product
was (Z)-2-(4′-methoxybenzylidene)imidazo[1,2-a]-
pyridin-3-one. To check for consistency, the reaction of a
different epoxy ester 3-(4′-chlorophenyl)oxirane-2-car-
boxylate with 2-aminopyridine was performed to give 3a;
the reaction provided the same class of scaffold. The
structure was confirmed by X-ray diffraction study (Fig-
ure 1 and the Supporting Information).19SYNLETT 2014, 25, 1692–1696
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The results of the optimization study of the reaction are
summarized in Table 1. Various Brønsted acids (entries
1–7) with a range of concentrations and solvents did not

improve the yield of the product beyond 25%. The use of
HClO4 (entry 7) or AcOH (entry 9) resulted in the gener-
ation of more side reactions without formation of the de-
sired product. The use of MsOH–AcOH, Eaton’s reagent,
ZrCl4–Eaton’s reagent, poly(phosphoric acid) (PPA), or
ZrCl4–PPA under neat conditions, enhanced the product
yield substantially and PPA was found to be most effec-
tive (entry 14). Conducting the reaction with 1 equiv PPA
in MeCN resulted in reduced yield.

We next examined on the generality of the developed re-
action with regard to both cascade partners. To our de-
light, various ethyl 3-aryloxirane-2-carboxylates and 2-
aminopyridines underwent the reaction (Table 2). Both
electron-withdrawing and electron-donating functional-
ities on the aryl of the epoxy ester as well as on the 2-ami-
nopyridines were compatible, although 3-(4′-nitro-
phenyl)oxirane-2-carboxylate provided less yield of prod-
uct 3j because of a lack of chemoselectivity. Unfortunate-
ly, conducting the reaction with the alkyl 2,3-epoxy ester,
ethyl 3-methyloxirane-2-carboxylate, gave a complex
product mixture that could not be separated. The tolerance
of the reaction towards functionalities such as chloro, bro-
mo, nitro, and methoxy groups provides the opportunity
for further chemical manipulations of the products.

We were then curious to probe the transformations in-
volved in this reaction. Under the optimized conditions, a
few products other than imidazo[1,2-a]pyridinone 3 were
found to form in trace amounts. When the reaction of eth-
yl 3-(4′-chlorophenyl)oxirane-2-carboxylate with 2-ami-
nopyridine was carried out at lower temperature (60 °C),
an additional product was obtained, which was found to
be enamine ester (IV; Scheme 1). Upon treatment of this
isolated intermediate with PPA, imidazopyridinone 3 was
obtained in similar yield. In a different study, authentic
β-amino alcohol (I) was treated with PPA to also produce
imidazopyridinone 3 in similar yield. These results imply
that the reaction follows a cascade pathway involving
β-amino alcohol (I) and enamine ester (IV; path A,
Scheme 1). The 1,2-migration of the pyridinylamine moi-
ety in conversion of β-amino alcohol (I) into enamine
(IV) indicates the formation of a N-bridging ring, i.e.,
aziridine (II). In next step, rearrangement through C–N
opening of aziridine (II) and elimination, assisted by PPA
as nucleophilic catalyst20 and dual activator, for the for-
mation of enamine (IV) is quite possible (for diastereose-
lectivity in the pathway, see Scheme 2). 

In normal acid-catalyzed epoxide C–O bond cleavage
with amine, the product β-amino alcohol does not undergo
further aziridination.17 Interestingly, in the PPA-promoted
reaction, β-amino alcohol (I) underwent aziridination
(path A) chemoselectively over trans-amidation of car-
boxyethyl with the ring NH of pyridin-2(1H)-imine
(path B). This signifies that aziridination of β-amino alco-
hol (I) occurred through dual activation of OH and NH by
PPA, which is not observed in usual methods, and, ulti-
mately, the oxirane of the epoxy ester served as a bi-elec-
trophile. The results of the optimization study together
with the physical properties of the acids, and the ineffec-

Table 1  Optimization of the Reactiona

Entry Acid (equiv) Solvent Temp 
(°C)

Time 
(h)b

Yield 
(%)c

1 p-TsOH (0.2) toluene 110 18 12

2 p-TsOH (0.2) DMF 110 18 9

3 p-TsOH (0.2) DMSO 110 18 16

4 p-TsOH (1) DMSO 110 18 23

5 TfOH (1) DMSO 110 3 20

6 MsOH (1) DMSO 110 14 25

7 HClO4 (1) DMA 110 14 NRd

8e MsOH – 110 1 22

9e AcOH – 110 1 NRd

10e MsOH–AcOH (1:1) – 110 1 43

11e MsOH–AcOH (1:2) – 110 1 35

12e Eaton’s Reagent – 110 1 42

13e ZrCl4 (0.05) + Eaton’s Reagent – 110 1 46

14f PPA – 110 1 62

15f ZrCl4 (0.05) + PPA – 110 1.5 45

16 PPA (1) MeCN 78 14 10

a Substrates: 0.5 mmol each.
b Optimum time.
c Isolated yield.
d Poor conversion, and no desired product formed.
e 1 mL acid was used.
f 1.5 g PPA was used.
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Figure 1  ORTEP structure of 3a19
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tiveness of acids possessing non-nucleophilic counter-an-
ion (HClO4) or low acidity (AcOH) signify that PPA plays
a crucial role in the present cascade reaction. The multi-
functional behavior, Brønsted acidity, nucleophilic catal-
ysis, dual activation, and polar protic solvent
characteristics of PPA are critical features of this reagent.

Interestingly, the reaction involves several C–O/C–N
bond-breaking/making events in one chemical step and
proceeds with chemo-, regio-, and diastereoselectivity.
By-products were water and ethanol only. Considering
that five transformations take place, the yields of the prod-
ucts are very good to excellent. 

In conclusion, a new reaction of aryl α,β-epoxy esters with
2-aminopyridine derivatives mediated by poly(phosphor-
ic acid) as a multifunctional activator, leads to biological-
ly relevant (Z)-2-methyleneimidazo[1,2-a]pyridin-3-one
derivatives.21 In contrast to known reactions of α,β-epoxy
esters, which take place through oxiranyl C–O or C–C
bond cleavage, the present reaction involves the oxirane
ring acting as a bi-electrophile in a cascade pathway of ep-
oxide C–O bond-cleavage, formation of α-enamine ester,
and intramolecular transamidation. The process takes
place with chemo-, regio- and diastereoselectivity. This
work is expected to prompt further strategic use of α,β-ep-

Table 2  Scope of the Reaction

Variation in azine for reaction with β-(4-chlorophenyl)epoxy ester

3a, 83%
3b, 77%

3c, 65%

3d, 82% 3e, 70%
3f, 38%

Variation in epoxy ester for reaction with 2-aminopyridine

3g, 73%
3h, 76%

3i, 66%

3j, 40%
3k, 53%

3l, 58%

3m, 62% 3n, 60% 3o, 68%
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oxy ester derivatives in the discovery of new organic com-
pounds and reactions. The convenient preparation of
imidazopyridinone derivatives by the developed method
will facilitate the use of this important class of compound
in organic synthesis and medicinal chemistry research.
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