TAUTOMERIE OXYDE DE PHOSPHINO-YLURIQUE

Oleg I. Kolodiazhnyi

Institut de chimie organique de l'Académie des sciences d'Ukraine, rue Mourmanskaya, #2 5, Kiev, 252094, U.S.S.R.

Abstract: Phosphine oxydes Ph₂P(0)CH(SO₂C₆H₄X)₂ are reversibly izomerised to ylids with a P-OH group Ph₂P(OH)=C(SO₂C₆H₄X)₂. The phosphine oxyde-P-OH ylid equilibrium depends on the solvent nature, temperature and substituents X at the SO₂C₆H₄X group.

Précédemment, nous avons décrit les équilibres tautomères
$$\underline{\underline{A}}$$
 1 et $\underline{\underline{B}}$ 2

 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{A}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{B}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{B}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{B}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{C}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{C}}$
 $R_2P-CH(CO_2Me)_2$ $R_2P-C(CO_2Me)_2$ $\underline{\underline{C}}$
 $R_2P-CH(CO_2Me)_2$ $\underline{\underline{C}}$

Dans cette communication, nous cherchons à montrer la réalité de l'équilibre oxyde de phosphine ____ ylure, sur le système C.

La tautomérie prototropique <u>a b</u> est une isomérie d'équilibre entre des formes

P-CH P-CC, qui diffèrent par la position du proton et de la liaison mul
O OH

Tiple Dere le ces des composés 1-4 des formes tautomères e et la sont présentes

tiple. Dans le cas des composés 1-4, des formes tautomères \underline{a} et \underline{b} sont présentes simultanément en mélange et peuvent être décelées spectroscopiquement.

Les composés 1-4 sont les substances solides, très stables. 3,4 En état cristallin ils existent sous une forme d'oxyde de phosphine a. Leur spectres infrarouges enregistrés en phase solide dans KBr ne présentent que des bandes d'absorption correspondant aux oxydes de phosphines 1a - 4a

Mō	Composé	F (sol	Lvant)	V P=0	V _s so ₂	ν _{as} so ₂ \	P-CH
<u>1a</u>	Ph ₂ P(0)CH(SO ₂ C ₆ H ₄ Cl) ₂	207° C	(CCl ₄)	1210	1160,1168	1340,1352	2820
<u>2a</u>	Ph2P(0)CH(SO2C6H5)2	209	(C ₆ H ₆)	1210	1160,1170	1340,1350	2820
<u>3a</u>	Ph_P(0)CH(SO_C6H4Me)2	181	(i-PrOH)	1200	1160,1170	1340,1350	2840
<u>4a</u>	Ph ₂ P(0)CH(SO ₂ C ₆ H ₄ OMe) ₂		(THF)	1200	1160,1170	1335,1345	2850

Malgré diverses tentatives une forme ylurique n'a pas été isolée à l'état pur. Nous n'avons réussi à obtenir qu'un mélange des deux formes $\underline{1a+1b}$ par précipitation rapide du composé $\underline{1}.^5$

<u>1a+1b</u>:substance amorphe, IR(KBr, cm⁻¹):1120,1130;1280,1290 (\Rightarrow P= \emptyset SO₂Ar); 2500-3500 (OH)- forme <u>b</u>; 1165; 1340,1352 (>C-SO₂Ar); 1200 faible (P=0)- forme <u>a</u>. Le spectre IR de la solution chloroformique de ce mélange montre la décroissance de la forme 1b au profit de la tautomère 1a. La cristallisation du mélange 1a+1b dans CCl₄ donne l'oxyde de phosphine pur <u>1a</u>. En solution, les formes <u>a</u> et <u>b</u> se trouvent à l'équilibre tautomère. Les spect-

res de RMN 31P et IR montrent qu'il s'agit en fait d'équilibre des formes a et b. En effet, dans les spectres de RMN on met en évidence deux signaux correspondant à déplacements chimiques du phosphore de la forme d'oxyde de phosphine a (5 p+23-24.5 ppm) et du phosphore de la forme ylurique \underline{b} (δ_p +47-49.5 ppm).La proportion de ces signaux varie avec la température et la nature du solvant (figure). De même, en infrarouge on observe la présence des bandes d'absorption dues à la forme a $(\text{$\sqrt{V}$ P=0 1200 cm}^{-1}, \text{\sqrt{V} SO}_2 1170;1350 cm}^{-1})$ et à la forme <u>b</u> $(\text{$\sqrt{V}$ SO}_2 1130 \text{ et } 1290 \text{ cm}^{-1}).$

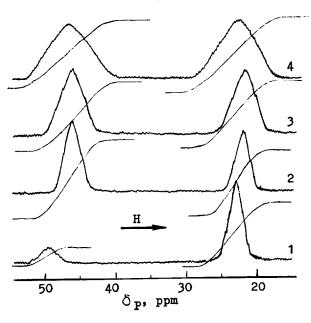


Figure. Spectres de RMN ³¹P (81.026 MHz) du composé 1:

1 - en solution dans CCl_A à +25° C;

2 - dans le THF à $+20^{\circ}$;

 $3 - \text{dans le THF à } +35^{\circ}$;

4 - dans le THF à $+55^{\circ}$

L'équilibre $\underline{a} \rightleftharpoons \underline{b}$ a été étudié par RMN 31P en fonction des facteurs suivants:

-température;

-nature du solvant:

-nature des substituants X en 4 sur le noyau aromatique de SO₂C₆H_AX. Le tableau résume l'ensemble des résultats observés. Son examen permet de faire quelques constatations immediates.

- 1) Une élévation de la température déplace la position de l'équilibre tautomère vers la forme a. On observe un déplacement de l'équilibre vers la forme b lorsque l'on refroidit un mélange tautomère.
- 2) Une élévation de la température conduit à l'élargissement des signaux de RMN. Cette observation met en évidence la grande vitesse d'interconversion entre deux tautomères (figure).
- 3) L'équilibre tautomère <u>a⇒b</u> varie fortement avec la nature du milieu. Le pourcentage de la forme ylurique b décroît en fonction du solvant selon la séque: CH₂Cl₂ < CHCl₃ < CCl₄ < THF.

 4) La proportion des formes tautomères dépend essentiellement des substituants
- X en 4 sur le noyau aromatique de SO₂C₆H₄X: le substituant électroattracteur (C1)

augmente le pourcentage de forme <u>b</u>; par contre, les groupements électrodonneurs (MeO, Me)le diminuent au profit du tautomère <u>a</u> $(\sigma_p=+0.227(Cl),-0.17(Me),-0.268$ (MeO)). Il est évident que les substituants accepteurs favorisant la delocalisation de la charge négative du carbon ylurique stabilisent la forme b.

Tableau

boaę com− %	CR ₂	% <u>a</u>	% <u>b</u>	K _T	solvant, température	рК _а (МеОН à 50%)
1	c(so ₂ c ₆ H ₄ c1) ₂	43 *)	57	1.32 ^{#)}	THF, 20° C	3.55 ⁸
		48	52	1.08	THF, 30°	
		51	49	0.96	THF, 40°	
		53	47	0.89	THF, 550	
		80	20	0.25	CCl ₄ ,25°	
Ì		86	14	0.16	CHC1 ₃ ,25°	
		90	10	0.11	CH ₂ Cl ₂ ,25	
2	c(so ₂ c ₆ H ₅) ₂	80	20	0.25	THF, 25°	3.60
		96.5	3.5	0.036	CHC1 ₃ ,25°	
3	$C(SO_2C_6H_4Me)_2$	90	10	0.11	THF, 25	3.62
4	С(SO ₂ C ₆ H ₄ OMe) ₂	96~98 ***	2-4	-	THF, 25°	3.68
4 5 ³	chso2cF3	100	0	•	THF;CC1 ₄ ,25°	7.8

Le pourcentage relatif des tautomères $\underline{a},\underline{b}$ et une constante d'équilibre tautomère $K_{\underline{m}}$ ont été déterminés par intégration des signaux de RMN 31 P.

Les composés 1-4 sont des CH-acides forts. On constate que les valeurs du pKa déterminées dans l'alcool aqueux sont peu influencées par la nature des substituants X.8

Les propriétés des composés 1-4 sont comparées à celles des acides du phosphore tetracoordonnés

^{***)}Le composé 4 est peu soluble dans le THF

Les composés 1-4 sont solubles dans une solution aqueuse de soude. Ils forment avec Et_3N des sels de triéthylammonium 6. L'alcoylation de ces composés à l'aide de CH_2N_2 fournit des produits 0-méthylés 8; l'analyse RMN du mélange brut réactionnel ne montre pas la présence des produits C-méthylés. De même des produits prennent naissance si l'on effectue l'alcoylation de l'anion 7 avec MeI. $^{10}\text{L'action de PCl}_5$ sur les composés 1-4 conduit à la formation des P-Cl ylures 2. 9 REFERENCES ET NOTES

- 1 0.I. Kolodiazhnyi, Tetrahedron Lett., 21,2269 (1980).
- 2 O.I. Kolodiazhnyi, Zh.Obshch.Khim., 45,546 (1975); O.I. Kolodiazhnyi, V.P. Koukhar, Ibid., 49,1992 (1979).
 L'équilibre prototropique RCH2-P=CHR = RCH=P-CH2R a été également montré:
 H.Schmidbaur, W. Tronich, Chem.Ber., 101,604 (1968); M. Jacquemart, M.H. Mebazaa, C.r.Acad.Sci., 279 C,655 (1974).
- 3 Les composés 1-5 sont préparés selon ⁴ par hydrolyse des P-Cl ylures (Rdt 85 -95%). 5: F 159° (C₆H₆). RMN ¹H (Õ,ppm,CDCl₃): 4.8, d ²J(PH) 11 Hz, 2H(PCH₂); 8, m, 10H (C₆H₅). RMN ³¹P, Õ_P 20 ppm. Les P-Cl ylures ont été obtenus selon ⁴ par action Ph₂PCl₃ sur les CH₂(SO₂C₆H₄X)₂ dans le THF, en présence de triéthylamine. Ph₂P(Cl)=C(SO₂C₆H₄X)₂: X=OMe, Rdt 72%, F 219° C (THF); X=Me, Rdt 70%, F 233° (C₆H₆); X=Cl, Rdt 69%, F 238° (C₆H₆); X=H, référence. ⁴
- 4 0.I. Kolodiazhnyi, Zh.Obshch.Khim., <u>47</u>,2390 (1977); 0.I. Kolodiazhnyi, V.P. Koukhar, Zh.Org.Khim., <u>13</u>,275 (1977).
- 5 Un mélange <u>1a+1b</u> a été obtenu par action de la solution étherée de HCl sur le sel de natrium du composé <u>1</u> dans l'éther de petrole à -70° C.
- 6 Les spectres IR ont été enregistrés sur un appareil "UR-20" (VEB Carl Zeiss Jena); les spectres de RMN³ P sur un appareil "Bruker WP-200", à 81.026 MHz, référence externe H₃PO₄ à 85%.
- 7 Le déplacement chimique de la forme ylurique δP 50 ppm est compatible avec les valeurs de δ³¹P des composés à motif Ph₂P(OR)=C<: a) F. Ramirez, O.P. Madan, C.P. Smith, J.Am.Chem.Soc., <u>86</u>,5339 (1964); Tetrahedron, <u>22</u>, 567 (1966); b) référence.
- IR ($\sqrt{SO_2}$, cm⁻¹, KBr) Rdt % FO C(solv.) $\delta_{\mathtt{P}}$ Composé 9 **- 1** 1130,1143; 1265,1280 6: Ph,P(0)-C(SO,Ph)2 Et3NH 26 100 172 1130,1145; 1262,1277 7: Ph_P(0)-C(SO_Ph), Na 100 8: Ph_P(OMe)=C(SO_Ph) 185(C₆H₆)⁴ 1120,1140; 1290,1300 75 191(C6H6)4 1135,1140; 1275,1290 9: Ph_P(C1)=C(SO_Ph) 60 π)_{8: RMN} ¹H(δ, ppm, cDc1₃): 3.95, d ²J(PH) 13 Hz, 3H (OCH₃); 8, m, 2OH (C₆H₅).
- 10- Les oxydes de 2-hydro-phosphorines fournissent avec Et₃0⁴BF₄ des produits 0- et C-alcoylés. Cependant, la forme OH (1-hydroxy- λ^5 phosphorine) n'a pas été décelée par les méthodes spectroscopiques: K. Dimroth, Fortschr. Chem. Forsch., 38, 86, 138 (1973).