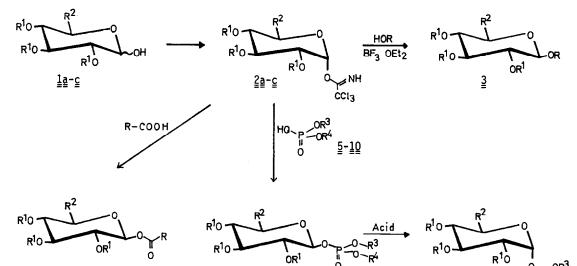
α - and β -D-GLUCOPYRANOSYL PHOSPHATES from O- α -D-GLUCOPYRANOSYL TRICHLOROACETIMIDATES ¹⁾

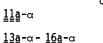
Richard R. Schmidt⁺, Michael Stumpp and Josef Michel Fakultät Chemie, Universität Konstanz 7750 Konstanz (Germany)

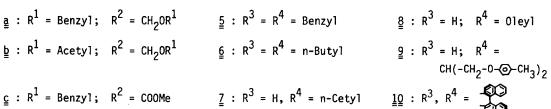
<u>Abstract:</u> B-D-Glucopyranosylphosphates were obtained in high yields from $0-\alpha-D$ -glucopyranosyl trichloroacetimidates $\underline{2a}-\underline{c}$ and phosphoric acid monoesters and diesters $\underline{5}-\underline{10}$. Some B-phosphates were transformed into the corresponding α -derivatives by acid catalysis.

Glycosyl phosphates are of importance as cell wall materials and as intermediates in the biological glycosyl transfer ²⁾. Methods for the synthesis of glycosyl phosphates from 1-0 unprotected glycoses or 1-0-acyl glycopyranoses are available, however, low yields or low α , β -selectivities are often observed ³⁾; improvements were partially reached with halogenoses ⁴⁾, 1.2-ortho esters ⁵⁾, 1.2-oxazolines ⁶⁾, and 1-0-thallium(I) salts ⁷⁾.

A convenient synthesis of glucopyranosyl phosphates should be possible from $0-\alpha$ -D-glucopyranosyl trichloroacetimidates $2\underline{a}-\underline{c}$, which are directly accessible from 1-0-unprotected glucose derivatives in quantitative yield $^{8-10}$: Alcohols and $2\underline{a}-\underline{c}$ give β -D-glucopyranosides $\underline{3}$ under mild acid catalysis; however, carboxylic acids and $2\underline{a}-\underline{c}$ yield 1-0-acyl β -D-glucopyranoses $\underline{4}$ without any further acidic catalyst $^{8-11}$; therefore phosphoric acid monoesters and diesters $\underline{5}-\underline{10}$ and $2\underline{a}-\underline{c}$ should afford directly the corresponding β -D-glucopyranosyl phosphates 12 (Table 1).

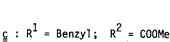

As expected, the β -D-glucopyranosyl phosphate $\underline{11}\underline{2}$ - β was obtained exclusively from benzyl protected 0- α -D-glucopyranosyl trichloroacetimidate $\underline{2}\underline{a}$ and pure dibenzyl phosphate ($\underline{5}$). Similarly, the β -D-glucopyranosyl phosphates $\underline{12}\underline{2}\underline{a}$ - β , $\underline{13}\underline{2}\underline{a}$ - β , $\underline{11}\underline{b}$ - β ¹³⁾- $\underline{13}\underline{b}$ - β , and $\underline{11}\underline{c}$ - β , $\underline{12}\underline{c}$ - β were synthesized in high yields from $\underline{2}\underline{a}$ and di-n-butyl phosphate ($\underline{6}$) or cetyl phosphate ($\underline{7}$), from acylated glucopyranosyl trichloroacetimidate $\underline{2}\underline{b}$ and $\underline{5}$ - $\underline{7}$, and from benzylated glucopyranosyluronate trichloroacetimidate $\underline{2}\underline{c}$ and $\underline{5}$ or $\underline{6}$.


However, use of commercially available $\underline{5}$ led, presumably due to contamination with traces of strong acid, via $\underline{11a}$ - β directly and exclusively to the α -phosphate $\underline{11a}$ - α . The same effect was reached by the addition of acid to the reaction mixture of $\underline{2a}$ and $\underline{5}$: With boron trifluoride etherate a slow $\underline{11a}$ - β to $\underline{11a}$ - α rearrangement was observed; however, addition of hydrogen chlor-

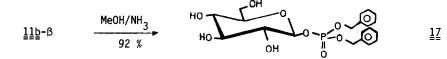

405

ide resulted in instantaneous and almost complete $\underline{1}\underline{1}\underline{a}-\alpha$ formation ¹⁴⁾. As shown for $\underline{1}\underline{3}\underline{a}-\beta$ the conversion to <u>13a</u>- α is also initiated by prolonged reaction times; this phenomenon is perhaps due to autocatalysis $^{15)}$. According to these results the immediate formation of the lpha-D-glucopyranosyl phosphates $14a - 16a - 16a - \alpha$ from 2a and oleyl phosphate 8, glyceryl phosphate 9, or the chiral (S)-bisnaphthyl phosphate $\underline{10}$ is due to the presence of strong acid.

The structural assignments are based on 1 H-NMR data (Table 2). As shown for the transformation <u> $11b-\beta$ to 17 acyl deprotection is an almost quantitative reaction under mild alkaline conditions.</u>



<u>11а</u>-в - <u>13а</u>-в


<u>11b</u>-в - <u>13b</u>-в

<u>11с</u>-в, <u>12с</u>-в

$$\frac{7}{2}$$
 : R^3 = H, R^4 = n-Cetyl 10 : R^3 , R^4

4

406

Substrates	Reaction Time [h] b	Products	ß	α	Yield [%] ^C
2a + 5 2a + 5 d	1 1		<u>11a</u> -β -	- <u>]]a</u> -α	93 60
<u>2</u> ª + 6	1		<u>1</u> 2a-β		92
<u>2a</u> + <u>7</u>	0.5		<u>13а</u> -в	-	83 81 (a·6-2·5
<u>2a</u> + <u>7</u>	30	BnO G		<u>₹5</u> ₫-α	01 (a.n-z.c
<u>2</u> a + 8_	1	BnO TO BIN OH BnO DO PEO	-	<u>1</u> 4α-α	71
<u>2</u> a + 9	1	$B_{n0} \rightarrow C^{OBn} \qquad OH \\ B_{n0} \rightarrow C^{OBn} \qquad OH \\ C \rightarrow C$	-)- снз -@- снз	<u>15a</u> -a	65
<u>2</u> a + 10	3		-	<u>16a</u> -α	59
<u>2</u> b + 5	1	$\begin{array}{c} A_{c0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} $	<u>11</u> ь-в	-	80
<u>2</u> ⊵ + 6_	3	$ \begin{array}{c} A_{c0} \\ A_{c0} \\ A_{c0} \\ \end{array} \begin{array}{c} O_{p} \\ O_{p} \\ O_{p} \\ O_{p} \end{array} \begin{array}{c} O_{p} \\ O_{p} \\ O_{p} \\ O_{p} \end{array} \begin{array}{c} O_{p} \\ O_{p} \\ O_{p} \end{array} \begin{array}{c} O_{p} \\ O_{p} \\ O_{p} \end{array} \end{array}$	<u>12</u> 5-в	-	69
<u>2₽</u> + <u>7</u>	3		······ <u>13</u> ₽-β	-	30
<u>²</u> ⊊ + 5	3	Bn0 D0 Bn0 Bn0 Bn0 Bn0 Bn0 Bn0 COOMe Bn0 Bn0 COOMe Bn0 COOME Bn0 COOME Bn0 COOME Bn0 COOME) <u>11</u> с-в	-	82
<u>2</u> ⊆ + 6_	3		∠ <u>1</u> 222-β	-	80

Table 1: Reactions of 2a-c with 5-10: Results a

^a Abbreviations: Bn = Benzyl; Ac = Acetyl; Me = Methyl. ^b All reactions were carried out in CH_2Cl_2 at r.t. without any additional catalyst. ^c Isolated yields; all compounds gave correct elemental analyses. ^d Use of commercially available 5 as substrate.

Compounds 11a-B	r 120		· · · · · · · · · · · · · · · · · · ·	1-Н	
<u>11a</u> -ß	[a] ²⁰ 578		δ	J _{1,2} [Hz]	J _{1,p} [Hz]
	+25,70	(c = 0.1)	5.25 (dd)	7.0	7.0
1 <u>2a</u> -B	+22 ⁰	(c = 0.1)	6.32 (dd)	7.0	7.0
<u>13а</u> -в	+16.7 ⁰	(c = 0.1)	5.20 (dd)	7.0	7.0
l <u>1</u> b-β ^c		(c = 0.1)	5.45 (dd)	7.0	7.0
<u>2</u> р-в	+ 3 ⁰	(c = 0.1)	5.32 (dd)	7.0	7.0
<u>l3</u> b−β	+ 5.3 ⁰	(c = 0.1)	5.31 (dd)	7.0	7.0
<u>1с</u> -в	+12.8 ⁰	(c = 0.1)	5.35 (dd)	7.0	7.0
<u>l2c</u> -в	_	d	5.25 (dd)	7.0	7.0
<u>17</u>	+ 2.3 ⁰	(c = 0.1)	5.00 (dd)	7.0	7.0
lla-α	+57 ⁰	(c = 0.1)	6.01 (dd)	3.0	7.0
1 <u>3a</u> -a	+48 ⁰	(c = 0.1)	5.95 (dd)	3.0	8.0
l4a-α	+20.3 ⁰	(c = 0.1)	6.10 (dd)	3.0	7.0
15 a- a		(c = 0.1)	5.95 (dd)	3.0	7.0
16a- α	+123.0 ⁰	(c = 0.1)	6.35 (dd)	3.0	7.0
	980) and		1.5. ULKINA, V.N. J	hibaev, and N.K. Kochetk	ov, carbonyur.nes. <u>or</u>
			nd G.T. Cori, J.Bio , 1050 (1941).	1.Chem. <u>121</u> , 465 (1937);	M.L. Wolfron and D.E.
Sebjak	in, L.V.	Volkova, E.E.	. Rusanova, and R.P	neeva, Carbohydr.Res. 52 . Evstigneeva, J.Org.Che 90, 83 (1981); and ref.	m. USSR 1980, 2021;
				dr.Res. <u>82</u> , 85 (1980) ar	
7) A. Gra	nata and	A.S. Perlin,	Carbohydr.Res. 94,	165 (1981).	
8) R R S	chmidt ar	nd J. Michel,	Angew.Chem. <u>92</u> , 76	3 (1980), Angew.Chem.Int	.Ed.Engl. 19, 731 (198
0)	chmidt ar	nd G. Grundlen	r, Synthesis 1981,	in print.	• _ · ·
				•	• •
9) R.R. S	chmidt an	nd J. Michel,	Angew.Chem., submi	tted for publication.	· ·
9) R.R. S O) R.R. S 1) Simila se, ma Lectur	r reactic nnofuranc e, IX ^O Jo	ons were repon ose, galactopy ournees sur la	rted with the corre vranose, xylopyrano Chimie et la Bioc		ridates of mannopyrano rides: R.R. Schmidt, ois, January 1981;
 P) R.R. S O) R.R. S 1) Simila se, ma Lectur Lectur 2) Phosph arbeit 	r reactic nnofuranc e, IX ^O Jo e, 1 St Eu ates of c , Univers	ons were repo ose, galactopy purnees sur la propean Sympos other carbohy oity of Konsta	rted with the corre vranose, xylopyrano a Chimie et la Bioc sium on Carbohydrat drates were synthes unz, 1981.	tted for publication. sponding trichloroacetim se, and some oligosaccha himie des Glucides, Auss es and Glycoconjugates, ized by the same procedu	hidates of mannopyrano- rides: R.R. Schmidt, ois, January 1981; Vienna, September 1981 pre: M. Stumpp, Diplom-
 P) R.R. S O) R.R. S 1) Simila se, ma Lectur Lectur 2) Phosph arbeit 	r reactic nnofuranc e, IX ^O Jc e, 1 st Eu ates of c , Univers was synth	ons were repo ose, galactopy purnees sur la propean Sympos other carbohy oity of Konsta	rted with the corre vranose, xylopyrano a Chimie et la Bioc sium on Carbohydrat drates were synthes unz, 1981.	tted for publication. sponding trichloroacetin se, and some oligosaccha himie des Glucides, Auss es and Glycoconjugates,	nidates of mannopyrano rides: R.R. Schmidt, ois, January 1981; Vienna, September 1983 pre: M. Stumpp, Diplom-
 P) R.R. S O) R.R. S Simila se, ma Lectur Lectur Phosph arbeit <u>11b-B</u> <u>11b-B</u> 	r reactic nnofuranc e, IX ^O Jc e, 1 st Eu ates of c , Univers was synth ance.	ons were repo ose, galactopy purnees sur la propean Sympos other carbohy oity of Konsta	rted with the corre vranose, xylopyrano a Chimie et la Bioc sium on Carbohydrat drates were synthes anz, 1981. endently, see ref.	tted for publication. sponding trichloroacetim se, and some oligosaccha himie des Glucides, Auss es and Glycoconjugates, ized by the same procedu	nidates of mannopyrano rides: R.R. Schmidt, ois, January 1981; Vienna, September 1983 pre: M. Stumpp, Diplom-

Table 2: Optical Rotations a and ^{1}H -NMR-Data b