Bifunctional Phosphines as Ligands and as Substrates: Synthesis of Iridium Hydrido, Carbonyl, Alkynyl, Vinyl, and Vinvlidene Complexes from i-Pr₂PCH₂CH₂X (X = OMe, NMe₂), Including the X-ray Crystal Structure of an Unusual Cyclometalated Product^{†,1}

Helmut Werner,* Michael Schulz, and Bettina Windmüller

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received February 9, 1995[®]

Treatment of $[IrCl(C_8H_{14})_2]_2$ (5) with *i*-Pr₂PCH₂CH₂OMe (6) leads to the formation of the octahedral hydridoiridium(III) complex [IrHCl{ $\kappa^2(C,P)$ -CH₂OCH₂CH₂Pi-Pr₂}{ $\kappa^2(P,O)$ -i-Pr₂- PCH_2CH_2OMe] (8), which according to the X-ray structure analysis contains both a fiveand a six-membered chelate ring. In contrast to 6, the phosphinoamine i-Pr₂PCH₂CH₂NMe₂ (7) reacts with 5 to give the expected square-planar iridium(I) compound trans-[IrCl{ κ (P)i-Pr₂PCH₂CH₂NMe₂}{ $\kappa^2(P,N)$ -i-Pr₂PCH₂CH₂NMe₂} (9), which in solution at room temperature is nonfluxional on the NMR time scale. Reaction of 9 with CO yields four-coordinate trans-[IrCl(CO){ $\kappa(P)$ -i-Pr₂PCH₂CH₂NMe₂]₂](10), while on treatment of **9** with HCl in benzene the six-coordinate $[IrHCl_2{\kappa(P)-i-Pr_2PCH_2CH_2NMe_2}{\kappa^2(P,N)-i-Pr_2PCH_2CH_2NMe_2}]$ (11) is obtained. Compound 11 is also one of the products of the reaction of 9 with CH_2Cl_2 which equally gives small quantities of the ionic bis(chelate) complex $[IrCl_2 \{\kappa^2(C,P)-CH_2NMe_2CH_2NMe_2CH_2-CH_2NMe_2CH_2NMe_2CH_2NMe_2CH_2NMe_2CH_2NMe_2CH_$ CH_2Pi - Pr_2 { $\kappa^2(P,N)$ -i- $Pr_2PCH_2CH_2NMe_2$]Cl (12). The chlorodihydrido and dichlorohydrido complexes [IrH(Cl)X{ κ (*P*)-*i*-Pr₂PCH₂CH₂OMe}{ κ^2 (*P*,*O*)-*i*-Pr₂PCH₂CH₂OMe}] (13, X = H; 14, X = Cl) are formed at room temperature almost instantaneously from 8 and H₂ or HCl, respectively. At 80 °C, the reaction of 8 (or 13) with methyl acrylate and methyl vinyl ketone affords the hydrido(vinyl)iridium(III) derivatives [IrHCl{ $\kappa^2(C,O)$ -CH=CHC(R)=O}{ $\kappa(P)$ -i- $Pr_2PCH_2CH_2OMe_{2}$ (15, R = OMe; 16, R = Me), whereas with HC=CR the alkynyl(hydrido) compounds [IrH(C=CR)Cl{ κ (P)-i-Pr₂PCH₂CH₂OMe}{ κ ²(P,O)-i-Pr₂PCH₂CH₂OMe}] (17, R = Ph; 18, $R = CO_2Me$) are obtained. Thermal or photochemical rearrangement of 17 and 18 leads to the formation of the isomeric vinylideneiridium(I) complexes trans-[IrCl(=C=CHR)- $[\kappa(P)-i-Pr_2PCH_2CH_2OMe]_2]$ (20, 21) in good yield. The octahedral alkynyl(vinyl) compound $[IrCl(C \equiv CCO_2Me)(CH = CHCO_2Me) \{\kappa(P) - i - Pr_2PCH_2CH_2OMe\} \{\kappa^2(P, O) - i - Pr_2PCH_2CH_2-i - Pr_2PCH_2-i -$ OMe] has been prepared from either 8 or 13 and excess HC=CCO₂Me. Chloride abstraction of **20** and **21** with AgSbF₆ affords the SbF₆ salts of the cationic complexes $[Ir(=C=CHR)]\kappa(P)$ i-Pr₂PCH₂CH₂OMe}{ $x^2(P,O)$ -i-Pr₂PCH₂CH₂OMe}]⁺ (**22**, **23**), in which according to the X-ray structure analysis of 23 the vinylidene ligand and the methoxy unit are *trans* disposed.

Introduction

We have recently shown that in contrast to $Pi-Pr_3$ the related but potentially bidentate phosphine *i*-Pr₂PCH₂-CH₂OMe, which can form a strong and a weak bond to an electron-rich transition-metal center, behaves as a supporting ligand for the intramolecular conversion of a $Ir(C_2H_4)$ to an isomeric $IrH(CH=CH_2)$ unit.² Whereas the equilibrium between the ethyleneiridium(I) complex 1 and the five-coordinate hydrido(vinyl)iridium(III) compound 2 lies mainly on the side of the olefin derivative, even in the presence of UV light, photolysis of the analogous starting material 3 in toluene proceeds rapidly and leads to the quantitative formation of the octahedral isomer 4 (Scheme 1).² The one-pot synthesis

of 3 starts with the dimeric bis(cyclooctene)iridium compound $[IrCl(C_8H_{14})_2]_2$, which reacts stepwise in an ether suspension at -50 °C with i-Pr₂PCH₂CH₂OMe and C_2H_4 to give the square-planar ethylene complex in excellent yield.

In this paper we report that, on treatment of [IrCl- $(C_{s}H_{14})_{2}]_{2}$ with *i*-Pr₂PCH₂CH₂OMe at room temperature

© 1995 American Chemical Society

[†] Dedicated to Professor William C. Kaska on the occasion of his 60th birthday.

^{*} Abstract published in Advance ACS Abstracts, July 1, 1995.
(1) (a) Studies on C-H Activation. 11. Part 10: Wecker, U.; Werner, H.; Peters, K.; von Schnering, H. G. Chem. Ber. 1994, 127, 1021-1029.
(b) This work is part of the Ph.D. Thesis of M. Schulz, University of Werner, Versity of Werner, Versity of Versity Versity Versity of Versity Ve Würzburg, Würzburg, Germany, 1991.
 (2) Schulz, M., Werner, H. Organometallics 1992, 11, 2791-2795.

in the absence of ethylene, a different reaction occurs, which leads via intramolecular C-H activation to a novel alkyl(hydrido)iridium(III) derivative. This compound reacts not only with H_2 and HCl but also with terminal alkynes and activated olefins to yield a series of alkynyl(hydrido)-, alkynyl(vinyl)-, vinylidene-, and hydrido(vinyl)iridium complexes. Some preliminary results of this work have already been communicated.³

Results and Discussion

Reactions of $[IrCl(C_8H_{14})_2]_2$ (5) with *i*-Pr₂PCH₂-CH₂OMe (6) and *i*-Pr₂PCH₂CH₂NMe₂ (7). Treatment of a suspension of 5 in benzene with 4 equiv of the bifunctional phosphine 6 at room temperature results in a fairly rapid change of color from red-brown to yellow and, after chromatography on Al₂O₃, yields (88%) a pale yellow solid which is correctly analysed as $[IrCl(6)_2]$. However, in contrast to the corresponding rhodium complex $[RhCl(6)_2]$, which according to the X-ray structure analysis contains one P-monodentate and one chelating phosphine ligand,⁴ the product from the reaction of 5 and 6 is not an analogous iridium(I)compound. This conclusion is supported not only by the significantly different properties (the rhodium complex [RhCl(6)₂] is thermally labile and highly air-sensitive, whereas compound 8 (see Scheme 2) can be handled for a short time in air) but more convincingly by the ¹H NMR spectrum which displays a high-field signal at δ -22.9 (doublet of doublets), typical for a metal-bonded

Figure 1. SCHAKAL drawing of complex 8.

Table 1.	Selected Bond Distances and Angles v	vith
	Esd's for Compound 8	

Lou bior compound c				
Bond Distances (Å)				
Ir-P1	2.309(1)	Ir-H	1.77	
Ir-P2	2.302(1)	O1-C2	1.444(6)	
Ir-Cl	2.518(1)	O1-C3	1.430(7)	
Ir-O1	2.339(4)	O2-C11	1.424(7)	
Ir-C12	2.049(6)	O2-C12	1.425(7)	
	Bond An	gles (deg)		
Cl-Ir-P1	92.07(2)	P2-Ir-O1	91.1(1)	
Cl-Ir-P2	98.92(5)	P2-Ir-C12	91.5(2)	
Cl-Ir-O1	90.6(1)	O1-Ir-C12	175.7(2)	
Cl-Ir-C12	92.3(2)	Ir-O1-C2	106.9(3)	
P1-Ir-P2	166.87(5)	Ir-O1-C3	121.5(3)	
P1-Ir-O1	81.5(1)	Ir-C12-O2	120.2(4)	
P1-Ir-C12	95.2(2)	C11-O2-C12	114.1(5)	

hydrogen atom. Furthermore, all of the NMR spectra $({}^{1}H, {}^{13}C, {}^{31}P)$ are *not* temperature-dependent, which would be expected if **8** were structurally related to [RhCl(**6**)₂].

The straightforward assumption that compound 8 is an isomer of $[IrCl(6)_2]$, containing a hydride and a chelating i-Pr₂PCH₂CH₂OCH₂ ligand instead of an intact i-Pr₂PCH₂CH₂OMe unit, has finally been confirmed by an X-ray structural investigation. As the SCHAKAL drawing (Figure 1) reveals, the iridium is coordinated in a somewhat distorted-octahedral fashion with the two phosphorus atoms in *trans* position. The bonding of the P-Ir-P axes (angle 166.87(5)°) points to the direction of the smallest ligand (hydride) and probably originates from steric hindrance between the isopropyl units and the other groups in the basal plane as well as from the ring strain in the five- and sixmembered chelate rings. The bond angles Cl-Ir-O1, Cl-Ir-Cl2, and Cl-Ir-P1 (see Table 1) are near to 90° and are thus in agreement with the octahedral geometry. The position of the metal-bonded hydride was taken from a difference-Fourier synthesis with all nonhydrogen atoms but could not be refined. The observed Ir-H bond length of 1.77 Å is similar to that found in other hydridoiridium(III) complexes.⁵

The distance between the metal and the carbon atom C12 (2.049(6) Å) is almost identical to that in the

⁽³⁾ Schulz, M.; Werner, H. Abstracts of Papers, 29th International Conference in Inorganic Chemistry, University of Sussex, Brighton, U.K., 1991; P 74.

⁽⁴⁾ Werner, H.; Hampp, A.; Peters, K.; Peters, E.-M.; Walz, L.; von Schnering, H.G. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1990, 45, 1548-1558.

Bifunctional Phosphines as Ligands and as Substrates

vinyliridium compounds $[C_5Me_5IrH(CH=CH_2)(PMe_3)]$ (2.054(4) Å)⁶ and $[IrH(CH=CH_2)Cl(CO)(Pi-Pr_3)_2]$ (2.059-(6) Å)² but somewhat longer than in the five-coordinate hydrido(phenyl) complex $[IrH(C_6H_5)Cl(Pi-Pr_3)_2]$ (2.010-(5) Å).⁷ We note, however, that the bond length Ir-O1 (2.339(4) Å) is relatively long, which probably reflects the rather weak interaction between the CH₃O oxygen and the metal center. The six-membered chelate ring containing the atoms C12 and O2 possesses a typical chair conformation with an Ir-P2 distance (2.302(1) Å) that is significantly shorter than in phosphine iridium complexes with *trans*-Ir(P*i*-Pr₃)₂ as a molecular unit.^{2,7,8}

Regarding the structure of compound 8 in solution, we are convinced that the dominating species is the same as in the crystal. The supporting evidence for the proposed octahedral geometry (in benzene) includes the following: (1) the nonfluxionality of the molecule; (2) the nonequivalence of the two phosphorus atoms illustrated by the doublet-of-doublet splitting of the hydride signal in the ¹H and by the appearance of an AB pattern in the 31 P NMR; (3) the large P-P coupling between the two ³¹P nuclei (349.5 Hz), which is most typical for trans-disposed phosphine ligands; and (4) the 2D-(H, C)-COSY spectrum of 8, which allows correct assignment for the four ¹³C NMR signals at δ 75.26, 67.66, 62.77, and 31.12 to the CH_2 and CH_3 carbon atoms of the ether-type units. The possibility that the metal center in 8 is five- and not six-coordinated (with the intact i-Pr₂PCH₂CH₂OMe ligand being only Pbonded), as has been proposed by Dombek for the related cyclometalated species [IrHCl{ $\kappa^2(C,P)$ -CH₂- OCH_2PtBu_2 { $\kappa(P)$ - tBu_2PCH_2OMe }],⁹ can probably be excluded. In contrast to this complex, which is deep red, compound 8 is pale yellow like many other octahedral hydridoiridium(III) derivatives.

The course of the reaction of 5 with the phosphino amine 7 is remarkably different to that of 5 with the phosphino ether 6. From 5 and 4 equiv of 7 in benzene a yellow air-stable solid is obtained, which is correctly analysed as 9 (see Scheme 2). Since the ³¹P NMR spectrum displays two well-separated doublets which show only a small P-P coupling of 17.6 Hz, we assume that **9** has a square-planar configuration with the two phosphorus atoms in cis position. However, in contrast to the analogous rhodium complex [RhCl(6)2] for which this geometry has been confirmed by X-ray analysis,⁴ at room temperature compound 9 is nonfluxional on the NMR time scale. This is also substantiated by the appearance of two signals for the NCH₃ protons in the ¹H NMR spectrum, of which only one (at δ 2.62) shows P-H coupling.

While 9 is completely inert toward H_2 and ethylene, it reacts smoothly with CO in benzene at room temperature to give the square-planar monocarbonyl complex 10 in almost quantitative yield. According to the ¹H and ³¹P NMR data, there is no doubt that the two

Figure 2. SCHAKAL drawing of complex 12.

phosphinoamine ligands are equivalent and that the structure of compound 10 is very similar to that of *trans*- $[IrCl(CO)(Pi-Pr_3)_2]$.¹⁰

The reaction of **9** with HCl in benzene results in an oxidative addition and the formation of complex **11**. Like the starting material **9**, the dichloro(hydrido)iridium-(III) derivative also possesses a rigid structure at room temperature with *cis*-disposed Pi- Pr_2 units. In agreement with this, the ³¹P NMR spectrum displays two signals at δ 23.45 and -6.8 with a small P-P coupling (13.2 Hz) which, due to additional P-H coupling in off-resonance, appear as a doublet-of-doublets. The hydride signal in the ¹H NMR spectrum is equally a doublet-of-doublets, confirming the inequivalence of the phosphorus atoms.

Surprisingly, the octahedral dichloro(hydrido) complex 11 is also formed on treatment of 9 with dichloromethane. We made this serendipitous discovery in the course of our attempts to grow single crystals of 9 by diffusion of pentane into a saturated solution of the iridium(I) compound in CH_2Cl_2 . With this procedure, a mixture of products is formed which contains 11 as the main component. When we stored the reaction mixture of 9 and CH₂Cl₂/pentane for a longer period of time, a small quantity of bright yellow crystals precipitated, which we investigated by X-ray crystallography. As Figure 2 reveals, the cationic complex 12 resembles compound 8 insofar as it also contains a five- and a sixmembered chelate ring. In contrast to 8, however, the two phosphorus atoms in 12 are cis-disposed, as are the two chloro ligands. The octahedral geometry around the metal center is considerably distorted, as is illustrated by the bond angles P1-Ir-Cl2 (165.34(6)°), P2-Ir-N1(171.6(2)°), Cl1-Ir-Cl4 (173.8(2)°), and P1-Ir-P2 $(103.26(7)^{\circ})$. The most remarkable feature, however, is the boat-type conformation of the Ir-containing sixmembered ring, which could originate from the direction of the attack of the NMe2 group of the nonchelated phosphinoamine ligand at the intermediarily formed Ir-CH₂Cl unit from the less hindered side of the molecule.

^{(5) (}a) Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. J. Am. Chem. Soc. **1977**, 99, 3872–3874. (b) Garlaschelli, L.; Khan, S. I.; Bau, R.; Longoni, G.; Koetzle, T.F. J. Am. Chem. Soc. **1985**, 107, 7212–7213.

⁽⁶⁾ Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 5732-5744.

 ⁽⁷⁾ Werner, H.; Höhn, A.; Dziallas, M. Angew. Chem. 1986, 98, 1112-1114; Angew. Chem., Int. Ed. Engl. 1986, 25, 1090-1092.
 (2) Wenner H.: Dimbarca T. Schulz M. Engl. T. S. Huger, W. S. Markar, M. S. M

⁽⁸⁾ Werner, H.; Dirnberger, T.; Schulz, M.; Ertel, T. S.; Hörner, W.; Bertagnolli, H. Submitted for publication.

^{(10) (}a) Strohmeier, W.; Onada, T. Z. Naturforsch. B: Anorg. Chem., Org. Chem. **1968**, 23, 1377–1379. (b) Werner, H.; Höhn, A. Z. Naturforsch. B: Anorg. Chem., Org. Chem. **1984**, 39, 1505–1509.

Table 2. Selected Bond Distances and Angles withEsd's for Compound 12

Bond Distances (Å)					
Ir-Cl1	2.488(2)	Ir-C14	2.036(6)		
Ir-Cl2	2.420(2)	N1-C2	1.504(9)		
Ir-N1	2.264(6)	N2C12	1.490(9)		
Ir-P1	2.310(2)	N2-C14	1.527(9)		
Ir-P2	2.305(2)				
Bond Angles (deg)					
Cl1-Ir-Cl2	88.63(6)	P1-Ir-P2	103.26(7)		
Cl1-Ir-P1	82.23(6)	P1-Ir-N1	85.2(2)		
Cl1-Ir-P2	92.67(6)	P1-Ir-C14	91.6(2)		
Cl1-Ir-N1	88.6(2)	P2-Ir-N1	171.6(2)		
Cl1-Ir-C14	173.8(2)	P2-Ir-C14	88.2(2)		
Cl2-Ir-P1	165.34(6)	N1-Ir-C14	91.4(2)		
Cl2-Ir-P2	88.53(6)	Ir-N1-C2	108.8(4)		
Cl2-Ir-N1	88.6 (2)	Ir-C14-N2	124.7(5)		
Cl2-Ir-C14	97.5(2)	C12-N2-C14	113.3(5)		

Despite the cationic nature of complex 12, both the Ir-C and the Ir-P distances (Table 2) are nearly identical to those found in compound 8. The bond length Ir-N1, however, is significantly shorter (2.264-(6) Å) than the corresponding Ir-O1 distance in 8 (2.339(4) Å), which probably reflects the higher donor strength of the NMe₂ compared with the OCH₃ group.

With regard to the mechanism of formation of 11 and 12 from 8 and dichloromethane, we assume that initially oxidative addition of the substrate to the four-coordinate iridium(I) center takes place. There is ample evidence for this type of behavior in other square-planar d⁸ systems as well as for the generation of $[L_nMH(Cl)]$ complexes from appropriate precursors $[L_nM]$ and CH_2 - Cl_2 .¹¹ The formation of the six-membered chelate ring in compound 12 from the supposed intermediate containing a M-CH₂Cl bond is also not without precedent since we have found that the half-sandwich type complex $[C_5H_5RhCH_2I\{\kappa^2(P,P)-Me_2PCH_2CH_2PMe_2\}]^+$, prepared from $[C_5H_5Rh(dmpe)]$ and CH_2I_2 , isomerizes quantitatively in the presence of NEt₃ to give $[C_5H_5-RhI\{\kappa^2(C,P)-CH_2PMe_2CH_2CH_2PMe_2\}]^+$.¹²

Reactions of the Cyclometalated Complex 8 with H_2 and HCl. Although the spectroscopic data of compound 8 provide no hint that in solution it is in equilibrium with the square-planar isomer $[IrCl(6)_2]$, the octahedral iridium(III) complex nevertheless behaves as if it were a four-coordinate iridium(I) species. It reacts instantaneously with H₂ to yield the dihydrido derivative 13 (Scheme 3), which is obtained as a pale yellow, extremely air-sensitive oil. Since the IR spectrum of 13 shows two bands at 1112 and 1055 cm^{-1} which are assigned to the asymmetric C-O-C stretching frequencies of a free and a coordinated ether functionality,¹³ we assume that the iridium is six-coordinate with one monodentate and one bidentate *i*-Pr₂PCH₂CH₂OMe ligand. The ³¹P NMR spectrum, however, displays only one sharp singlet in C_6D_6 (triplet in off-resonance due to P-H coupling), indicating that in solution at room temperature two isomers A and C exist, which interconvert rapidly (on the NMR time scale) via the fivecoordinate species **B**. This proposal is also supported

by the ¹H NMR spectrum in which only one signal (δ -28.9, triplet with J(PH) = 15.4 Hz) appears at higher field. The ΔG^* value for the dynamic process shown in Scheme 3 is probably below 35 kJ/mol since only one very broad signal has been observed in the ³¹P NMR spectrum (in toluene- d_8) at -80 °C. For the analogous hydrido(vinyl)iridium(III) compound [IrH(CH=CH_2)Cl-(**6**)₂], coalescence of the two ³¹P NMR resonances occurs at -45 °C, which together with the difference in the chemical shift of the two signals results in a ΔG^* value of approximately 41 kJ/mol.²

Treatment of 8 with an equimolar amount of HCl in benzene equally leads to a rapid reaction in which the dichloro(hydrido)iridium(III) complex 14 is formed in excellent yield. Since the spectroscopic data of 13 and 14 resemble each other (IR, ν (COC)_{asym} 1103 and 1045 cm⁻¹; ¹H NMR at 25 °C, one high-field signal at δ -34.3 as a triplet with J(PH) = 13.2 Hz; ³¹P NMR at 25 °C, one sharp singlet (doublet in off-resonance) at δ 17.5), we not only assume analogous structures but also similar fluxional behavior (see Scheme 3) of the two compounds in solution.

Preparation of Hydrido(vinyl), Hydrido(alkynyl), and Alkynyl(vinyl) Complexes from 8. In contrast to the formation of 13 and 14, which is completed at 25 °C in a few minutes, the reactions of ${\bf 8}$ with methyl acrylate and methyl vinyl ketone proceed much more slowly but finally yield the hydrido(vinyl)iridium complexes 15 and 16 almost quantitatively. Both compounds are pale yellow air-sensitive oily substances, the composition of which has been confirmed by elemental analysis. In contrast to 13 and 14, the IR spectra of 15 and 16 display only one asymmetric C-O-C stretch at ca. 1120 cm^{-1} , and thus there is no doubt that the phosphino ether ligands are not involved in chelate-type coordination. On the basis of the appearance of ν (C=O) bands at 1578 (for 15) and 1539 cm^{-1} (for 16), which are significantly shifted to shorter wave numbers compared with free CH2=CHCO2Me and $CH_2 = CHC(=O)CH_3$, respectively, we believe that the C=O group of the activated olefins is linked to the metal center and thus completes the octahedral coordination sphere. The structural proposal for 15 and 16 shown in Scheme 4 is fully consistent with the appearance of only one singlet resonance in the ³¹P NMR spectra which in off-resonance is split into a doublet. It should be noted, however, that the ¹H NMR spectra of 15 and 16 (in contrast to those of 13 and 14) display a broad multiplet for the PCHCH₃ protons of the Pi- Pr_2 units instead of two doublets-of-virtual-triplets. Due to the bonding of four different ligands in the equatorial plane, compounds 15 and 16 contain no mirror plane that passes through the two phosphorus atoms. The two molecules therefore possess four different prochiral centers, which makes all the phosphino CH3 groups anisochronous and leads to an overlap of four virtually coupled signals.

The octahedral hydrido(vinyl) complexes 15 and 16 are not only accessible from 8 but also on treatment of the dihydridoiridium(III) compound 13 with methyl acrylate or methyl vinyl ketone, respectively. In this case, the yield is 80%-85%. With regard to the mechanism of the reaction, we assume that displacement of the metal-bonded C=O unit by the substituted olefin occurs initially, which is followed by an insertion of the

^{(11) (}a) Scherer, O. J.; Jungmann, H. J. Organomet. Chem. 1981, 208, 153-159. (b) Marder, T. B.; Fultz, W. C.; Calabrese, J. C.; Harlow, R. L.; Milstein, D. J. Chem. Soc., Chem. Commun. 1987, 1543-1545. (12) Werner, H.; Hofmann, L.; Paul, W.; Schubert, U. Organometallics 1988, 7, 1106-1111.

^{(13) (}a) Coutts, R. S. P.; Martin, R. L.; Wailes, P. C. Aust. J. Chem. **1971**, 24, 2533–2540. (b) Lindner, E.; Mayer, H. A.; Wegener, P. Chem. Ber. **1986**, 119, 2616–2630.

19

Scheme 3

 $CI \rightarrow Ir \rightarrow C = C \rightarrow R$ $iPr_2P \rightarrow C = C \rightarrow R$ $iPr_2P \rightarrow OMe$ 20: R = Ph $21: R = CO_2Me$

olefinic ligand into one of the Ir-H bonds. Reductive elimination of $C_2H_5CO_2Me$ or $C_2H_5C(=O)CH_3$ from the alkyl(hydrido)metal derivative would lead to the intermediate [IrCl(6)₂] which, after addition of a second molecule of $CH_2=CHX$ (X = CO₂Me, C(=O)Me), gives the olefin complex *trans*-[IrCl(CH₂=CHX)(6)₂]. Finally, this species intramolecularly rearranges via C-H activation to yield **15** and **16**, respectively. In this context, it should be mentioned that a similar reaction of bis-(phosphine)iridium(I) chlorides with $CH_2=CHX$ to yield octahedral hydrido(vinyl)iridium(III) compounds has been established for $L = Pi-Pr_3^{14}$ and $PPh_3^{14b,15}$ and also for some related rhodium complexes.¹⁶

(exc.)

Terminal alkynes HC=CR (R = Ph, CO₂Me) react rapidly with equimolar amounts of either 8 or 13 in benzene at room temperature to yield nearly quantitatively the alkynyl(hydrido)iridium(III) derivatives 17 and 18 (Scheme 4). At 25 °C, both compounds are fluxional in solution, which is illustrated by the appearance of one signal in the ³¹P NMR and one sharp triplet resonance for the metal-bonded hydride ligand in the ¹H NMR spectrum. That the two molecules, however, are not five-coordinate but contain one *P*-monodentate and one chelating phosphino ether unit is indicated by the IR spectra in which *two* asymmetric C-O-C stretching frequencies at 1105 and 1045 cm⁻¹ (for **17**) and at 1108 and 1038 cm⁻¹ (for **18**) have been observed. On the basis of the spectroscopic data, it cannot be decided whether the alkynyl or the hydride ligand is *trans* to Cl in **17** and **18**.

If compounds 8 and 13 are treated with an excess of methyl propiolate instead of 1 equiv, the alkynyl(vinyl)iridium(III) complex 19 is formed in about 60%-65%yield. Methyl acrylate has been detected as a byproduct in the reaction of 13 with $HC = CCO_2 Me$. In solution, compound 19 is less fluxional than the corresponding alkynyl(hydrido) derivative 18 and from the coalescence temperature $(-3 \, ^{\circ}C \, in \, toluene-d_8)$ and the difference in the chemical shift of the two signals in the lowtemperature ³¹P NMR spectrum, a ΔG^{\ddagger} value of approximately 49 kJ/mol can be calculated. Compared with 13, for which a ΔG^{\dagger} value of less than 35 kJ/mol has been estimated, the alkynyl(vinyl)iridium(III) complex is more rigid, which is probably due to a stronger Ir-OCH₃ bond than in the dihydridometal derivative. The *trans* configuration at the C=C double bond of the vinyl ligand in 19 is confirmed by the H-H coupling of

^{(14) (}a) Werner, H.; Dirnberger, T.; Schulz, M. Angew. Chem. **1988**, 100, 993-994; Angew. Chem., Int. Ed. Engl. **1988**, 27, 948-950. (b) Dirnberger, T. Dissertation, University of Würzburg, Würzburg, Germany, 1990.

⁽¹⁵⁾ Papenfuhs, B. Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 1993.

⁽¹⁶⁾ Dirnberger, T.; Werner, H. Chem. Ber. 1992, 125, 2007-2014.

15.3 Hz which should be considerably smaller if the substituents were in cis position.

Neutral and Cationic Vinylideneiridium Complexes Containing the Phosphino Ether 6 as Ligand. Like several other alkynyl(hydrido)iridium-(III) species,^{17,18} compounds 17 and 18 rearrange smoothly to give the vinylideneiridium(I) isomers. The rate of rearrangement crucially depends on the substituent R of the alkynyl ligand. While the reaction of 18 already starts at room temperature and is completed after warming a solution of 18 (or 13 and methyl propiolate) in benzene for 5 h at 80 °C, the isomerization of 17 proceeds much more slowly and even after 72 h at 80 °C about 30% of the starting material is still unreacted. The preferred method to prepare the vinylidene complex 20 (see Scheme 4) is the photochemical route, and thus, by using a 125 W UV lamp, the rearrangement of 17 to 20 is complete after 6 h. The spectroscopic data of compounds 20 and 21 resemble those of the corresponding triisopropylphosphine complexes,¹⁷ and therefore both phosphino ether ligands are thought to be coordinated only via the phosphorus atom. As far as the NMR data are concerned, the most characteristic features are the low-field signals of the vinylidene α -carbon atom at δ 263.1 (for 20) and 254.8 (for 21) in the ¹³C NMR and the high-field resonances of the =CHR proton at δ -2.5 (for 20) and -2.1 (for 21) in the ¹H NMR spectrum. We note that in the spectrum of the related rhodium compound trans-[RhCl- $(=C=CHPh)\{\kappa(P)-i-Pr_2PCH_2CH_2OMe\}_2$] the signal of the vinylidene proton appears at $\delta 0.04.^4$

Treatment of 20 and 21 with $AgSbF_6$ leads to the nearly quantitative formation of the first square-planar cationic vinylideneiridium(I) complexes (Scheme 5). In contrast to the neutral compounds 20 and 21, the SbF_6 salts 22 and 23, which have been isolated as deeply colored solids, are only moderately air-sensitive. Since for both compounds the ³¹P NMR spectrum in CD₂Cl₂ at room temperature displays only one sharp signal at δ 40.0 (for 22) and 35.6 (for 23), there is no doubt that both cationic species are fluxional in solution on the NMR time scale. Coalescence has been observed (in CD_2Cl_2) at about -35 °C. In the case of 23, the ³¹P NMR spectrum shows at -70 °C again only one singlet instead of the expected AB pattern, which indicates that under these conditions the cation possesses a rigid structure with equivalent Pi- Pr_2 units. A possible explanation is that the low-temperature form of 23 contains a fivecoordinate metal center with two chelating phosphino

Figure 3. SCHAKAL drawing of complex 23.

Table 3. Selected Bond Distances and Angles withEsd's for Compound 23

Bond Distances (Å)					
2.309(2)	O3-C6	1.46(1)			
2.347(2)	O3-C7	1.43(1)			
1.760(6)	C1-C2	1.33(1)			
2.163(5)	C2-C3	1.43(1)			
Bond Angles (deg)					
174.56(8)	C1-Ir-O3	172.1(3)			
91.2(3)	Ir-O3-C6	112.2(5)			
82.0(2)	Ir-O3-C7	120.2(5)			
92.2(3)	Ir-C1-C2	175.6(6)			
94.8(2)	C1-C2-C3	124.9(8)			
	Bond Dist 2.309(2) 2.347(2) 1.760(6) 2.163(5) Bond Ang 174.56(8) 91.2(3) 82.0(2) 92.2(3) 94.8(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

ether ligands thus providing an 18-electron configuration for iridium(I). It should be mentioned that recently square-planar cationic rhodium complexes of the general composition trans-[Rh(=C=CHR)(L)(Pi-Pr_3)_2]⁺ (R = H, Me, Ph, tBu; L = NH₃, py) have also been prepared either on treatment of η^3 -allyl or ethenerhodium(I) precursors with 1-alkynes.¹⁹

In order to substantiate the exact ligand arrangement for 23, an X-ray structural investigation has been carried out. The SCHAKAL drawing (Figure 3) reveals that the iridium is coordinated in an almost perfect square-planar fashion with the two phosphorus atoms in trans position. The sum of the bond angles in the plane is 360.2°. Compared with Ir-P1, the Ir-P2 distance (see Table 3) is somewhat elongated (by ~ 0.04 Å), which could be due to steric repulsion between the isopropyl groups at P2 and the CO₂Me unit. In agreement with the allene-type stereochemistry of the P_2 -Ir=C=CHR moiety, the plane of the carbomethoxy substituent is perpendicular to the [Ir, P1, P2, C1, O3] plane, the dihedral angle being 92.4°. The Ir-C1 bond length (1.760(6) Å) is rather short compared with the corresponding distances of carbeneiridium(I) compounds²⁰ but very similar to the Ir-C bond length of the neutral vinylidene complex trans-[IrCl(=C=CHCO2- $Me(Pi-Pr_3)_2$] (1.746(6) Å).^{17b} Compared with the Ir-O distance in 8 (2.339(4) Å), the Ir-O3 bond length in 23

^{(17) (}a) Garcia Alonso, F. J.; Höhn, A.; Wolf, J.; Otto, H.; Werner, H. Angew. Chem. **1985**, 97, 401-402; Angew. Chem., Int. Ed. Engl. **1985**, 24, 406-408. (b) Höhn, A.; Otto, H.; Dziallas, M.; Werner, H. J. Chem. Soc., Chem. Commun. **1987**, 852-854. (c) Höhn, A.; Werner, H. J. Organomet. Chem. **1990**, 382, 255-272. (d) Werner, H.; Höhn, A.; Schulz, M. J. Chem. Soc., Dalton Trans. **1991**, 777-789.

⁽¹⁸⁾ Werner, H.; Dirnberger, T.; Höhn, A. Chem. Ber. 1991, 124, 1957–1961.

⁽¹⁹⁾ Nürnberg, O.; Werner, H. J. Organomet. Chem. 1993, 460, 163– 175.

⁽²⁰⁾ Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. J. Am. Chem. Soc. 1985, 107, 6708-6710 and references cited therein.

is unusually short, which is probably the result of the *trans* arrangement of the strong σ -donating ether and the strong π -accepting vinylidene ligand. This bonding scheme also explains why the cationic compounds [Ir-(=C=CHR){ $\kappa(P)$ -*i*-Pr₂PCH₂CH₂OMe}{ $\kappa^2(P,O)$ -*i*-Pr₂PCH₂-CH₂OMe}]⁺ are quite inert and do not react with HC=CPh or HC=CCO₂Me to give bis(vinylidene)irid-ium(I) species.

Concluding Remarks

The work presented in this paper has confirmed that bifunctional ("hemilabile")²¹ phosphines of the general composition $R_2PCH_2CH_2X$ are not only useful ligands which temporarily are able to protect a free coordination site but can also behave as reacting substrates. Provided that X is OCH₃ and the methoxy oxygen is coordinated to a transition metal that favors oxidativeaddition reactions, metalation of the OCH₃ group can occur to generate an alkyl(hydrido)metal derivative. Such an intramolecular C-H activation process involving a phosphino ether like *i*-Pr₂PCH₂CH₂OMe is certainly not limited to iridium since we have recently shown²² that, in the coordination sphere of osmium, a OCH₃ moiety can even be metalated *twice* to form a metal-carbene M=CHO- unit.

It is most interesting, however, that the substituents R at the phosphorus atom of the phosphino ethers seem to have a pronounced effect on the intramolecular metalation. While [IrCl(C₈H₁₄)₂]₂ (**5**) reacts with *i*-Pr₂-PCH₂CH₂OMe (**6**) at room temperature to give the unexpected octahedral iridium(III) complex **8**, on treatment of [IrCl(C₈H₁₂)]₂ with Cy₂PCH₂CH₂OMe under nearly the same conditions the square-planar iridium(I) compound [IrCl{ κ (P)-Cy₂PCH₂CH₂OMe}{ $\kappa^{2}(P,O)$ -Cy₂-PCH₂CH₂OMe}] is formed.²³ There is also a difference in the case of C-H activation of OCH₃ and NCH₃ groups, because both **6** and **7** can be transformed with osmium as the metal center to OCH= and NCH= units,²² whereas with iridium only a metalation of the phosphino ether takes place.

The final and really unusual facet of these studies is that the cyclometalated compound **8**, which is undoubtedly more thermodynamically stable both in the solid state and in solution than the hypothetical isomer [IrCl- $\{\kappa(P)-i$ -Pr₂PCH₂CH₂OMe $\}\{\kappa^2(P,O)-i$ -Pr₂PCH₂CH₂-OMe $\}$], behaves like the isomeric four-coordinate species in the presence of substrates such as H₂ and HCl (present work) and CO and C₂H₄ (ref 2). These results (and also those obtained with activated olefins and terminal alkynes as substrates) indicate that the C-H activation process which leads to the formation of **8** is reversible, which is in complete analogy with the conversion of [Ru](Pi-Pr₃) to [Ru]H{ $\kappa^2(C,P)$ -CH₂CHMePi-Pr₂} ([Ru] = (C₆H₆)Ru)²⁴ but in contrast to the formation of [Ir]H(CH₃) from [Ir] and methane ([Ir] = (C₅- Me_5)Ir(CO), (C_5Me_5) Ir(PMe₃)).²⁵ We are currently investigating whether a phosphino unit PR₂ and/or a functional group X of a substituted phosphine R₂P- $(CH_2)_n$ X can also initiate or facilitate the C-H activation of the $-(CH_2)_n$ - chain, and we will report on this work in due course.

Experimental Section

All reactions were carried out under an atmosphere of argon by Schlenk tube techniques. The starting materials [IrCl- $(C_8H_{14})_{2]_2}$ (5),²⁶ *i*-Pr₂PCH₂CH₂OMe (6),⁴ and *i*-Pr₂PCH₂CH₂-NMe₂ (7)⁴ were prepared as described in the literature. The olefins CH₂=CHC(O)R and alkynes HC=CR were commercial products from Aldrich and Fluka. NMR spectra were recorded on Jeol FX 90 Q, Bruker AC 200, and Bruker AMX 400 instruments, and IR spectra were recorded on a Perkin-Elmer 1420 infrared spectrometer. Melting points were determined by DTA.

Preparation of [IrClH{ $\kappa^2(C,P)$ -CH₂OCH₂CH₂P*i*-Pr₂}{ κ^2 -(P,O)-i-Pr₂PCH₂CH₂OMe]] (8). A solution of 5 (108 mg, 0.12 mmol) in 10 mL of benzene was treated with 6 (90 μ L, 0.48 mmol) and stirred for 20 min at room temperature. The solvent was removed, the oily residue was dissolved in 3 mL of benzene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C₆H₆/CH₂Cl₂ (2:3) a yellow fraction was eluted, from which a pale yellow, only moderately air-sensitive solid was isolated: yield 123 mg (88%); mp 70 °C decomp. Anal. Calcd for $C_{18}H_{42}ClIrO_2P_2$: C, 37.27; H, 7.30. Found: C, 36.98; H, 7.08. IR (C₆H₆): ν (IrH) 2167, ν (COC)_{asym} 1050 cm⁻¹. ¹H NMR (C₆D₆, 200 MHz): δ 5.68 (dd, J(PH) = 10.1 Hz, J(HH) = 5.8 Hz, 1H of IrCH₂), 5.42 (d, br, J(HH) =5.8 Hz, 1H of IrCH₂), 3.77, 3.21 (both m, PCH₂CH₂), 3.34 (s, OCH₃), 2.78, 2.00 (both m, PCHCH₃), 1.55, 1.41 (both m, PCH₂), 1.49, 1.27, 1.12, 1.00 (all m, PCHCH₃), -22.92 (dd, J(PH) = 17.2 Hz, J(P'H) = 14.2 Hz, IrH). ¹³C NMR (C₆D₆, 50.2 MHz): δ 75.26 (s, IrCH₂OCH₂), 67.66 (s, PCH₂CH₂OCH₃), 62.77 (s, OCH₃), 31.12 (s, br, IrCH₂), 26.1-20.3 (m, PCHCH₃) and PCH₂CH₂OCH₃), 20.0-17.7 (m, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 29.11, 6.72 (both d, J(PP) = 349.5 Hz).

Preparation of *cis*-[**IrCl**{ $\kappa^2(P,N)$ -*i*-**Pr**₂**PCH**₂**CH**₂**NMe**₂]-{ $\kappa(P)$ -*i*-**Pr**₂**PCH**₂**CH**₂**NMe**₂] (9). A solution of 5 (58 mg, 0.065 mmol) in 10 mL of benzene was treated with 7 (55 μL, 0.26 mmol) and stirred for 10 min at room temperature. The solvent was removed, and the residue was recrystallized from pentane to give yellow, only moderately air-sensitive crystals: yield 57 mg (72%); mp 58 °C decomp. Anal. Calcd for C₂₀H₄₈ClIrN₂P₂: C, 39.62; H, 7.98; N, 4.62. Found: C, 40.43; H, 7.76; N, 4.33. ¹H NMR (C₆D₆, 90 MHz): δ 2.7 (m, PCH₂CH₂), 2.62 (d, *J*(PH) = 1.8 Hz, NCH₃), 2.11 (s, NCH₃), 2.0–1.8 (m, PCHCH₃ and PCH₂), 1.5–0.9 (m, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 41.24, 7.21 (both d, *J*(PP) = 17.6 Hz).

Preparation of *trans*-[IrCl(CO){ κ (*P*)-*i*-Pr₂PCH₂CH₂-NMe₂]₂] (10). A slow stream of CO was passed through a solution of 9 (43 mg, 0.07 mmol) in 5 mL of benzene at room temperature for 30 s. After the solution was stirred for 5 min, the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V). With benzene a yellow fraction was eluted, from which a yellow, almost air-stable solid was isolated: yield 41 mg (91%); mp 98 °C decomp. Anal. Calcd for C₂₁H₄₈ClIrN₂OP₂: C, 39.77; H, 7.63; N, 4.42. Found: C, 39.62; H, 7.80; N, 4.59. IR (C₆H₆): ν(IrCO) 1937 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 2.85 (m, PCH₂CH₂), 2.4–

⁽²¹⁾ Jeffrey, J. C.; Rauchfuss, T. B. Inorg. Chem. 1979, 18, 2658-2666.

⁽²²⁾ Werner, H.; Weber, B.; Nürnberg, O.; Wolf, J. Angew. Chem. **1992**, 104, 1079–1081; Angew. Chem., Int. Ed. Engl. **1992**, 31, 1025– 1027.

 ^{(23) (}a) Lindner, E.; Meyer, S. J. Organomet. Chem. 1988, 339, 193–
 (198. (b) Review: Bader, A.; Lindner, E. Coord. Chem. Rev. 1991, 108, 27–110.

⁽²⁴⁾ Werner, H.; Kletzin, H.; Roder, K. J. Organomet. Chem. 1988, 355, 401-417.

^{(25) (}a) Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G. J. Am. Chem. Soc. **1983**, 105, 7190-7191. (b) Wax, M. J.; Stryker, J. M.; Buchanan, J. M.; Kovac, C. A.; Bergman, R. G. J. Am. Chem. Soc. **1984**, 106, 1121-1122.

⁽²⁶⁾ van der Ent, A.; Onderdelinden, A. L. Inorg. Synth. 1973, 14, 92-95.

Table 4.	Crystallogra	aphic Data	for 8.	12. and 23
			,	

formula	$C_{18}H_{42}ClIrO_2P_2(8)$	$C_{21}H_{50}Cl_{3}IrN_{2}P_{2}\left(12\right)$	$C_{22}H_{46}F_{6}IrO_{4}P_{2}Sb~({\bf 23})$
fw	580.15	691.17	864.52
cryst size, mm ³	$0.5 \times 0.5 \times 0.7$	0.15 imes 0.15 imes 0.4	0.3 imes 0.45 imes 0.5
cryst syst	triclinic	orthorhombic	monoclinic
space group	P1 (No. 2)	$Pna2_1$ (No. 33)	$P2_1/n$ (No. 14)
cell dimens determn	24 refins, $10^\circ < \theta < 15^\circ$	23 reflns, $10^{\circ} < \theta < 15^{\circ}$	25 refins, $10^\circ < \theta < 16^\circ$
a, Å	7.852(1)	9.921(1)	13.167(2)
b, Å	9.529(2)	22.070(4)	16.956(2)
c, Å	15.747(3)	14.162(2)	14.534(2)
a, deg	78.67(2)		
β , deg	79.62(2)		99.32 (1)
v. deg	84.63(2)		
V, Å ³	1134.2(4)	3100.8(7)	3201.9(8)
Z	2	4	4
$d_{\rm calcd}, {\rm g} {\rm cm}^{-3}$	1.70	1.48	1.79
diffractometer		Enraf Nonius CAD4	
radiation (graphite monochromator)		Mo Ka (0.709 30 Å)	
temp, °C	-80 ± 1	-50 ± 1	20 ± 1
μ , cm ⁻¹	61.3	66.9	51.4
scan method	ω/θ	ω/θ	ω/θ
$2\theta(\max), \deg$	44	50	44
tot no. of refins scanned	3026	3107	4296
no. of unique refins	2776	3107	3714
no. of obsd refins	2638	2258	3088
no, of params refined	217	288	361
R	0.031	0.028	0.028
R_{w}	0.039	0.031	0.030
refin:param ratio	12.16	7.84	8.55
resid electron density, e Å ⁻³	1.00	1.30	1.14

2.1 (m, PCHCH₃ and PCH₂), 2.27 (s, NCH₃), 1.40, 1.23 (both dvt, N = 15.1 Hz, J(HH) = 6.8, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 32.68 (s).

Preparation of $[IrCl_2H{\kappa^2(P,N)-i-Pr_2PCH_2CH_2NMe_2} [\kappa(P)-i-\Pr_2PCH_2CH_2NMe_2]$ (11). A solution of 9 (62 mg, 0,102 mmol) in 10 mL of benzene was treated with 0.32 mL of a 0.32 M solution of HCl in benzene (0.102 mmol) and stirred for 15 min at room temperature. The solvent was removed, and the pale yellow residue was washed repeatedly with pentane and dried in vacuo: yield 44 mg (67%); mp 82 °C decomp. Anal. Calcd for C₂₀H₄₉Cl₂IrN₂P₂: C, 37.38; H, 7.69; N, 4.10. Found: C, 37.23; H, 7.86; N, 4.36. IR (C₆H₆): ν (IrH) 2232 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz): δ 3.75, 2.81 (both m, PCH_2CH_2), 2.58 (d, J(PH) = 2.0 Hz, NCH_3), 2.4-2.1 (m, PCHCH₃), 2.06 (s, NCH₃), 1.93, 1.55 (both m, PCH₂), 1.62 (dd, $J(PH) = 16.0 Hz, J(HH) = 6.8, PCHCH_3), 1.51 (dd, J(PH) =$ 15.4 Hz, J(HH) = 7.2, PCHCH₃), 1.39 (dd, J(PH) = 15.2 Hz, J(HH) = 7.2, PCHCH₃), 1.15 (dd, J(PH) = 14.0 Hz, J(HH) =7.2, PCHCH₃), 1.06 (dd, J(PH) = 11.2 Hz, J(HH) = 7.2, $PCHCH_3$, 1.04 (dd, J(PH) = 12.4 Hz, J(HH) = 7.2, $PCHCH_3$), $0.87 \,(dd, J(PH) = 16.0 \,Hz, J(HH) = 7.2, PCHCH_3), 0.74 \,(dd, J(PH) = 16.0 \,Hz, J(HH) = 16.0 \,Hz, J(HH) = 16.0 \,Hz$ $J(PH) = 12.0 Hz, J(HH) = 6.8, PCHCH_3), -22.59 (dd, J(PH))$ = 19.8 Hz, J(P'H) = 16.0 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 23.45, -6.81 (both d, J(PP) = 13.2 Hz).

Reaction of 5 with CH_2Cl_2. Compound **9** (50 mg, 0.08 mmol) was dissolved in 1 mL of dichloromethane at room temperature, and the solution was layered with 1.5 mL of pentane. After it had been stored for 48 h, a small quantity of bright yellow crystals **12** precipitated, which were separated from the reaction mixture and dried in vacuo: yield ca. 10 mg.

Preparation of [IrClH₂{ $\kappa^2(P,O)$ -*i*-**Pr**₂**PCH**₂**CH**₂**OMe**}-{ $\kappa(P)$ -*i*-**Pr**₂**PCH**₂**CH**₂**OMe**}] (13). A slow stream of H₂ was passed through a solution of 8 (95 mg, 0.164 mmol) in 10 mL of benzene at room temperature for 30 s. After the solution was stirred for 5 min, the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C₆H₆/CH₂Cl₂ (1:2) a yellow fraction was eluted, from which a pale yellow, very air-sensitive oil was isolated: yield 70 mg (73%). IR (C₆H₆): ν (IrH) 2260, ν (COC)_{asym} 1112 and 1055 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 3.69 (m, PCH₂CH₂), 3.26 (s, OCH₃), 2.20 (m, PCHCH₃), 1.82 (m, PCH₂), 1.16, 1.12 (both dvt, N = 14.3 Hz, J(HH) = 7.1, PCHCH₃), -28.87 (t, J(PH) = 15.4 Hz,

IrH). ^{31}P NMR (C_6D_6, 36.2 MHz): δ 40.07 (s, t in off-resonance).

Preparation of $[IrCl_2H{\kappa^2(P,O)\cdot i - Pr_2PCH_2CH_2OMe}]$ -{k(P)-i-Pr₂PCH₂-CH₂OMe}] (14). A solution of 8 (47 mg, 0.08 mmol) in 5 mL of benzene was treated with 0.25 mL of a 0.32 M solution of HCl in benzene (0.08 mmol) and stirred for 5 min at room temperature. After the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the solution was chromatographed on Al₂O₃ (neutral, activity grade V). With $C_6H_6/CH_2Cl_2(2:1)$ a yellow fraction was eluted from which a pale yellow, moderately air-sensitive solid was isolated: yield 40 mg (80%); mp 96 °C decomp. Anal. Calcd for C₁₈H₄₃Cl₂IrO₂P₂: C, 35.06; H, 7.03. Found: C, 35.49; H, 7.18. IR (C₆H₆): ν (IrH) 2275, ν (COC)_{asym} 1103 and 1045 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 3.60 (m, PCH₂CH₂), 3.28 (s, OCH₃), 2.75 (m, PCHCH₃), 2.05 (m, PCH₂), 1.30 (dvt, N = 14.2 Hz, J(HH) = 6.8, PCHCH₃), 1.22 (dvt, N = 13.7 Hz, J(HH) = 6.8, PCHCH₃), -34.31 (t, J(PH) = 13.2 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 17.53 (s, d in off-resonance).

Preparation of [IrClH{ $\kappa^2(C,O)$ -CH=CHC(O)OMe}{ $\kappa(P)$ *i*-Pr₂PCH₂CH₂OMe₂] (15). (a) A solution of 8 (43 mg, 0.074 mmol) in 5 mL of benzene was treated with methyl acrylate (0.1 mL) and stirred for 20 h at 80 °C. After the solution was cooled to room temperature, the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the resulting solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C₆H₆/CH₂Cl₂ (1:2) a yellow fraction was eluted, from which a pale yellow, air-sensitive oil was isolated: yield 43 mg (88%). Anal. Calcd for C₂₂H₄₈ClIrO₄P₂: C, 39.66; H, 7.26. Found: C, 40.11; H, 7.49. IR (C₆H₆): ν (IrH) 2230, ν -(C=O) 1578, ν (COC)_{asym} 1110 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 10.55 (d, J(HH) = 7.8 Hz, IrCH=CH), 6.62 (d, J(HH) = 7.8Hz, IrCH=CH), 3.85 (m, PCH₂CH₂), 3.69 (s, C(O)OCH₃), 3.22 (s, OCH₃), 2.38 (m, PCHCH₃), 2.10 (m, PCH₂), 1.30-0.95 (m, PCHCH₃), -26.90 (t, J(PH) = 15.4 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 11.95 (s, d in off-resonance). (b) The preparation of 15 from 13 (38 mg, 0.065 mmol) was performed analogously as described in (a): yield 36 mg (82%).

Preparation of [IrClH{ $\kappa^2(C,O)$ -CH=CHC(O)Me}{ $\kappa(P)$ *i*-Pr₂PCH₂CH₂OMe}₂] (16). (a) A solution of 8 (47 mg, 0.081 mmol) in 5 mL of benzene was treated with methyl vinyl ketone (0.1 mL) and stirred for 20 h at 80 °C. After the solution was cooled to room temperature, the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the resulting solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C₆H₆/CH₂Cl₂ (1:2) a yellow fraction was eluted, from which a pale yellow, air-sensitive oil was isolated: yield 44 mg (83%). Anal. Calcd for C₂₂H₄₈ClIrO₃P₂: C, 40.64; H, 7.44. Found: C, 40.50; H, 7.76. IR (C₆H₆): ν (IrH) 2213, ν (C=O) 1539, ν (COC)_{asym} 1125 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 11.00 (d, J(HH) = 7.1 Hz, IrCH=CH), 6.84 (d, J(HH) = 7.1 Hz, IrCH=CH), 3.80 (m, PCH₂CH₂), 3.23 (s, OCH₃), 2.40 (m, PCHCH₃), 2.14 (s, C(O)-CH₃), 1.93 (m, PCH₂), 1.29-0.91 (m, PCHCH₃), -23.80 (t, J(PH) = 15.9 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 12.36 (s, d in off-resonance). (b) The preparation of **16** from **13** (41 mg, 0.07 mmol) was performed analogously as described in (a): yield 39 mg (86%).

Preparation of $[IrClH(C \equiv CPh) \{ \kappa^2(P, O) \cdot i \cdot Pr_2PCH_2CH_2 \cdot I_2 \cdot$ OMe { $\kappa(P)$ -*i*- $Pr_2PCH_2CH_2OMe$] (17). (a) A solution of 8 (84 mg, 0.145 mmol) in 10 mL of benzene was treated with phenylacetylene (16 $\mu L,\,0.145$ mmol) and stirred for 5 min at room temperature. After the solvent was removed, the colorless solid was washed repeatedly with small amounts of pentane and dried in vacuo: yield 89 mg (90%); mp 108 °C decomp. Anal. Calcd for C₂₆H₄₈ClIrO₂P₂: C, 45.77; H, 7.09. Found: C, 46.10; H, 7.27. IR (C₆H₆): ν (IrH) 2280, ν (IrC=C) 2096, v(C=C) 1595, v(COC)_{asym} 1105 and 1045 cm⁻¹. ¹H NMR $(C_6D_6, 90 \text{ MHz}): \delta 7.27 \text{ (m, } C_6H_5), 3.64 \text{ (m, } PCH_2CH_2), 3.27$ (s, OCH₃), 2.78 (m, PCHCH₃), 2.05 (m, PCH₂), 1.43-1.08 (m, PCHCH₃), -31.24 (t, J(PH) = 13.5 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 23.06 (s, d in off-resonance). (b) The preparation of 17 from 13 (61 mg, 0.105 mmol) was performed analogously as described in (a): yield 62 mg (87%).

Preparation of $[IrClH(C=CCO_2Me)]$ $\kappa^2(P,O)$ -*i*-Pr₂PCH₂- CH_2OMe { $\kappa(P)$ -*i*- $Pr_2PCH_2CH_2OMe$] (18). (a) A solution of 8 (91 mg, 0.157 mmol) in 10 mL of benzene was treated with methyl propiolate (14 μ L, 0.157 mmol) and stirred for 5 min at room temperature. After the solvent was removed, the pale red residue was washed repeatedly with small amounts of pentane and dried in vacuo. According to the ³¹P NMR spectrum, the product contains small amounts of the corresponding vinylidene complex 23: yield 93 mg (89%). IR (C₆H₆): v(IrH) 2254, v(IrC≡C) 2094, v(COC)_{asym} 1108 and 1038 cm $^{-1}$. 1H NMR (C6D6, 90 MHz): δ 3.57 (m, PCH2CH2), 3.42 (s, C(O)OCH₃), 3.23 (s, OCH₃), 2.81 (m, PCHCH₃), 1.96 (m, PCH_2 , 1.42–1.11 (m, PCHCH₃), -30.50 (t, J(PH) = 15.8 Hz, IrH). ³¹P NMR (C₆D₆, 36.2 MHz): δ 11.95 (s, d in offresonance). (b) The preparation of 18 from 13 (69 mg, 0.118 mmol) was performed analogously as described in (a): yield 71 mg (91%).

Preparation of [IrClH(CH=CHCO₂Me)(C=CCO₂Me)-{ $\kappa^2(P,O) \cdot i \cdot \Pr_2 PCH_2 CH_2 OMe$ }{ $\kappa(P) \cdot i \cdot \Pr_2 PCH_2 CH_2 OMe$ }] (19). (a) A solution of 8 (75 mg, 0.129 mmol) in 10 mL of benzene was treated with methyl propiolate (0.1 mL) and stirred for 15 min at room temperature. After the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the resulting solution was chromatographed on Al_2O_3 (neutral, activity grade V). With C_6H_6/CH_2Cl_2 (2:1) a yellow fraction was eluted, from which a pale yellow, air-sensitive oil was isolated: yield 59 mg (61%). Anal Calcd for $C_{26}H_{50}$ -ClIrO₆P₂: C, 41.73; H, 6.74. Found: C, 42.18; H, 6.82. IR $(C_6H_6)\!\!: \ \nu(IrC\!\!=\!\!C)\ 2094, \nu(C\!\!=\!\!O)\ 1675, \nu(C\!\!=\!\!C)\ 1612, \nu(COC)_{asym}$ 1115 and 1040 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 10.21 (dt, J(PH) = 1.8 Hz, J(HH) = 15.3 Hz, IrCH=CH), 6.86 (dt, J(PH))= 1.8 Hz, J(HH) = 15.3 Hz, IrCH=CH), 3.54 (s, CH=CHC- $(O)OCH_3$, 3.52 (m, PCH₂CH₂), 3.47 (s, C=CC(O)OCH₃), 3.20 (s, OCH₃), 2.87 (m, PCHCH₃), 1.89 (m, PCH₂), 1.40-1.02 (m, PCHCH₃). ³¹P NMR (C₆D₆, 45 °C, 36.2 MHz); δ 3.37 (s). (b) The preparation of 19 from 13 (71 mg, 0.122 mmol) was performed analogously as described in (a): yield 58 mg (64%).

Preparation of trans-[IrCl(=C=CHPh){ $\kappa(P)$ -*i*-**Pr**₂**PCH**₂-**CH**₂**OMe**}₂] (20). (a) A solution of 17 (63 mg, 0.092 mmol) in 10 mL of benzene was stirred for 72 h at 80 °C. After the solution was cooled to room temperature, the solvent was

removed, the oily residue was dissolved in 2 mL of benzene, and the resulting solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C_6H_6 a red fraction was eluted, from which a deep red air-sensitive oil was isolated: yield 34 mg (54%). Anal. Calcd for C₂₆H₄₈ClIrO₂P₂: C, 45.77; H, 7.09. Found: C, 45.35; H, 7.09. IR (C₆H₆): ν (C=C) 1630, $\nu(C=C_{Ph})$ 1592, $\nu(COC)_{asym}$ 1108 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 7.16 (m, C₆H₅), 3.76 (m, PCH₂CH₂), 3.06 (s, OCH₃), 2.48 (m, PCHCH₃), 2.46 (m, PCH₂), 1.39 (dvt, N = 15.4 Hz, J(HH) = 7.1, PCHCH₃), 1.09 (dvt, N = 14.1 Hz, J(HH) = 7.0, PCHCH₃), -2.49 (t, J(PH) = 2.9 Hz, =C=CH). ¹³C NMR $(C_6D_6, 50.2 \text{ MHz}): \delta 263.10 \text{ (t, } J(PC) = 13.1 \text{ Hz, } Ir=C=C),$ 128.31, 128.17, 125.66, 124.84 (all s, C_6H_5), 111.02 (s, Ir=C=C), 69.45 (s, PCH₂CH₂OCH₃), 57.96 (s, OCH₃), 24.02 (vt, N = 28.7Hz, PCHCH₃), 20.88 (vt, N = 26.4 Hz, PCH₂CH₂OCH₃), 19.94, 18.78 (both s, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 23.02 (s). (b) A solution of 17 (66 mg, 0.097 mmol) in 13 mL of benzene was irradiated with a 125 W mercury vapor UV lamp (Phillips HPK) for 6 h at room temperature. After the solvent was removed, the solution was worked up as described in (a): yield 48 mg (72%).

Preparation of trans-[IrCl(=C=CHCO₂Me){ $\kappa(P)$ -i-Pr₂-PCH₂CH₂OMe₂] (21). A solution of 13 (64 mg, 0.11 mmol) in 10 mL of benzene was treated with methyl propiolate (9.8 μ L, 0.11 mmol) and stirred for 5 h at 80 °C. After the solution was cooled to room temperature, the solvent was removed, the oily residue was dissolved in 2 mL of benzene, and the resulting solution was chromatographed on Al₂O₃ (neutral, activity grade V). With C_6H_6 a red fraction was eluted, which was brought to dryness in vacuo. A deep red air-sensitive solid was isolated, which was recrystallized from pentane at -78°C: yield 59 mg (81%); mp 92 °C decomp. Anal. Calcd for C₂₂H₄₆ClIrO₄P₂: C, 39.78; H, 6.98. Found: C, 40.22; H, 7.14. IR (C₆H₆): ν (C=O) 1698, ν (C=C) 1637, ν (COC)_{asym} 1108 cm⁻¹. ¹H NMR (C₆D₆, 90 MHz): δ 3.76 (m, PCH₂CH₂), 3.53 (s, C(O)-OCH₃), 3.13 (s, OCH₃), 2.49 (m, PCH₂), 2.45 (m, PCHCH₃), 1.27 $(dvt, N = 15.6 Hz, J(HH) = 7.3, PCHCH_3), 1.10 (dvt, N = 14.2)$ Hz, J(HH) = 7.0, PCHCH₃), -2.09 (t, J(PH) = 2.5 Hz, =C=CH). ¹³C NMR (C₆D₆, 50.2 MHz): δ 254.83 (t, J(PC) = 12.8 Hz, Ir=C=C), 151.69 (s, $C(O)OCH_3$), 103.12 (s, Ir=C=C), 69.20 (s, PCH₂CH₂OCH₃), 58.08 (s, OCH₃), 50.29 (s, C(O)- OCH_3), 24.04 (vt, N = 30.5 Hz, $PCHCH_3$), 20.40 (vt, N = 26.7Hz, PCH₂CH₂OCH₃), 19.64, 18.43 (both s, PCHCH₃). ³¹P NMR (C₆D₆, 36.2 MHz): δ 26.78 (s).

Preparation of trans-[Ir(=C=CHPh){ $\kappa^2(P,O)$ ·*i*·Pr₂- PCH_2CH_2OMe { $\kappa(P)$ -*i*- $Pr_2PCH_2CH_2OMe$ } SbF₆ (22). A solution of 20 (54 mg, 0.079 mmol) in 10 mL of dichloromethane was treated with a solution of $AgSbF_6$ (27 mg, 0.079 mmol) in 3 mL of dichloromethane and stirred for 10 min at room temperature. The solution was filtered, and the solvent was removed from the filtrate. An oily residue was obtained, which was dissolved in 2 mL of dichloromethane, and 10 mL of ether was added slowly. A purple-red solid precipitated which was washed with ether and dried in vacuo: yield 61 mg (87%); mp 94 °C decomp. Anal. Calcd for $C_{26}H_{48}F_6IrO_2P_2Sb$: C, 35.38; H, 5.48. Found: C, 35.15; H, 5.68. IR (CH₂Cl₂): ν (C=C) 1667, (CD₂Cl₂, 90 MHz): δ 7.12 (m, C₆H₅), 3.86 (m, PCH₂CH₂), 3.48 (s, OCH₃), 2.48 (m, PCHCH₃), 2.25 (m, PCH₂), 1.30, 1.28 (both dvt, N = 15.0 Hz, J(HH) = 7.2, PCHCH₃), -1.62 (t, J(PH) =2.6 Hz, =C=CH). ¹³C NMR (CD₂Cl₂, 50.2 MHz): δ 275.88 (t, J(PC) = 13.1 Hz, Ir = C = C, 128.65, 126.44, 126.23 (all s, $C_6 H_5$), 111.50 (t, J(PC) = 4.4 Hz, Ir=C=C), 75.55 (s, PCH₂CH₂OCH₃), 62.42 (s, OCH₃), 25.78 (vt, N = 30.7 Hz, PCHCH₃), 20.40 (vt, $N = 25.3 \text{ Hz}, \text{PCH}_2\text{CH}_2\text{OCH}_3), 19.57, 18.63 \text{ (both s, PCHCH}_3).$ ³¹P NMR (CD₂Cl₂, 36.2 MHz): δ 39.96 (s).

Preparation of *trans*-[Ir(=C=CHCO₂Me){ $\kappa^2(P,O)$ -*i*-Pr₂PCH₂CH₂OMe}{ $\kappa(P)$ -*i*-Pr₂PCH₂CH₂OMe}]SbF₆ (23). This compound was prepared analogously as described for 22, using 21 (58 mg, 0.087 mmol) and AgSbF₆ (30 mg, 0.089 mmol) as starting materials: yield 65 mg (84%); mp 130 °C decomp. Anal. Calcd for C₂₂H₄₆F₆IrO₄P₂Sb: C, 30.57; H, 5.36. Found:

 Table 5. Positional Parameters and Their Esd's

 for 8

atom	x/a	y/b	z/c	$B_{ m eq}$
Ir	0.20688(4)	0.03441(4)	0.25186(2)	1.567(7)
Cl	-0.0782(3)	0.0333(2)	0.3551(2)	2.58(5)
P1	0.3280(3)	-0.1485(2)	0.3463(2)	1.76(5)
P2	0.1498(3)	0.2340(2)	0.1498(2)	1.88(5)
01	0.3207(7)	0.1742(6)	0.3323(4)	2.0(1)
O2	0.0618(9)	-0.0394(7)	0.1015(4)	3.0(1)
C1	0.445(1)	-0.052(1)	0.4071(6)	2.5(2)
C2	0.479(1)	0.0997(9)	0.3553(6)	2.2(2)
C3	0.217(1)	0.226(1)	0.4053(6)	2.9(2)
C4	0.187(1)	-0.2571(9)	0.4378(6)	2.2(2)
C5	0.286(1)	-0.363(1)	0.5008(6)	3.2(2)
C6	0.048(1)	-0.329(1)	0.4074(7)	3.0(2)
C7	0.500(1)	-0.2773(9)	0.3057(6)	2.4(2)
C8	0.435(1)	-0.390(1)	0.2647(7)	3.5(2)
C9	0.645(1)	-0.198(1)	0.2410(7)	3.3(2)
C10	-0.014(1)	0.213(1)	0.0843(6)	2.8(2)
C11	-0.081(1)	0.064(1)	0.1104(7)	3.0(2)
C12	0.124(1)	-0.098(1)	0.1816(6)	2.6(2)
C13	0.339(1)	0.289(1)	0.0647(6)	2.5(2)
C14	0.409(1)	0.171(1)	0.0129(7)	3.7(3)
C15	0.482(1)	0.337(1)	0.1048(7)	3.6(3)
C16	0.077(1)	0.402(1)	0.1913(6)	2.6(2)
C17	0.077(1)	0.537(1)	0.1203(7)	3.5(2)
C18	-0.103(1)	0.390(1)	0.2490(7)	37(3)

Table 6. Positional Parameters and Their Esd'sfor 12

atom	x/a	y/b	z/c	$B_{ m eq}$
Ir	0.03375(3)	0.07053(2)	0.000	1.654(5)
Cl1	0.0035(3)	0.0215(1)	-0.1568(2)	2.63(5)
Cl2	-0.1350(3)	0.1443(1)	-0.0447(2)	2.80(5)
Cl3	0.5201(4)	0.1586(2)	0.2289(2)	3.71(7)
Cl4	0.3189(6)	0.1650(2)	0.5237(6)	12.0(2)
Cl5	0.0259(5)	0.2463(2)	0.5001(7)	8.7(1)
P1	0.1529(3)	-0.0172(1)	0.0307(2)	1.82(5)
P2	0.1965(3)	0.1357(1)	-0.0564(2)	2.02(5)
N1	-0.1474(9)	0.0180(5)	0.0526(7)	2.6(2)
N2	0.0598(9)	0.1694(4)	0.1607(7)	2.3(2)
C1	0.012(1)	-0.0688(6)	0.0427(9)	2.9(2)
C2	-0.099(1)	-0.0387(5)	0.1005(9)	2.6(2)
C3	-0.241(1)	-0.0001(6)	-0.0240(9)	3.4(3)
C4	-0.232(1)	0.0505(6)	0.123(1)	3.7(3)
C5	0.238(1)	-0.0232(5)	0.1466(8)	2.4(2)
C6	0.270(1)	-0.0887(6)	0.1786(9)	3.6(3)
C7	0.365(1)	0.0173(6)	0.157(1)	3.4(3)
C8	0.259(1)	-0.0541(5)	-0.0608(9)	2.7(2)
C9	0.412(1)	-0.0539(6)	-0.046(1)	3.5(3)
C10	0.219(2)	-0.1192(7)	-0.083(1)	4.8(3)
C11	0.238(1)	0.1893(5)	0.0390(8)	2.4(2)
C12	0.113(1)	0.2122(5)	0.0883(8)	2.6(2)
C13	0.139(1)	0.1799(6)	0.2508(8)	3.4(3)
C14	0.072(1)	0.1030(5)	0.1319(7)	2.0(2)
C15	-0.083(1)	0.1872(6)	0.183(1)	3.1(3)
C16	0.362(1)	0.1039(6)	-0.0887(9)	2.8(2)
C17	0.360(1)	0.0777(6)	-0.1914(9)	3.3(3)
C18	0.486(1)	0.1434(7)	-0.073(1)	4.1(3)
C19	0.142(1)	0.1890(5)	-0.1494(8)	2.5(2)
C20	0.071(1)	0.1629(6)	-0.2346(9)	3.6(3)
C21	0.253(1)	0.2333(5)	-0.185(1)	34(3)

C, 30.76; H, 5.21. IR (CH₂Cl₂): ν (C=O) 1705, ν (C=C) 1638, ν (COC)_{asym} 1106 and 1040 cm⁻¹. ¹H NMR (CD₂Cl₂, 90 MHz): δ 3.85 (m, PCH₂CH₂), 3.63 (s, C(O)OCH₃), 3.46 (s, OCH₃), 2.58 (m, PCHCH₃), 2.34 (m, PCH₂), 1.32 (dvt, N = 15.6 Hz, J(HH) = 7.1, PCHCH₃), -1.60 (t, J(PH) = 2.5 Hz, =C=CH). ¹³C NMR (CD₂Cl₂, 50.2 MHz): δ 267.40 (t, J(PC) = 11.3 Hz, Ir=C=C), 211.26 (s, C(O)OCH₃), 104.08 (s, Ir=C=C), 74.59 (s, PCH₂CH₂-OCH₃), 62.07 (s, OCH₃), 51.47 (s, C(O)OCH₃), 25.74 (vt, N = 31.4 Hz, PCHCH₃), 20.35 (vt, N = 26.6 Hz, PCH₂CH₂OCH₃), 19.41, 18.54 (both s, PCHCH₃). ³¹P NMR (CD₂Cl₂, 36.2 MHz): δ 35.59 (s).

X-ray Structural Analyses of 8, 12, and 23. Single crystals were grown from toluene/pentane (8), dichloromethane/pentane (12), and dichloromethane (29). Crystal data collec-

Table 7. Positional Parameters and Their Esd'sfor 23

		101 40		
atom	x/a	y/b	z/c	$B_{ m eq}$
Ir	0.20897(2)	0.72791(2)	0.36084(2)	3.299(6)
\mathbf{Sb}	0.26778(5)	0.52018(4)	0.84829(5)	5.65(2)
P1	0.0593(2)	0.7197(1)	0.4239(2)	4.33(5)
P2	0.3662(2)	0.7456(1)	0.3071(2)	3.95(5)
F1	0.2040(6)	0.4481(5)	0.9148(5)	11.0(2)
F2	0.3312(7)	0.5913(5)	0.7827(5)	12.3(2)
F3	0.325(1)	0.5588(9)	0.9588(8)	14.0(4)
F4	0.219(1)	0.480(1)	0.735(1)	14.3(5)
F5	0.156(1)	0.581(1)	0.843(2)	17.4(7)
F6	0.381(1)	0.462(1)	0.850(1)	19.8(7)
01	0.3023(7)	0.4310(4)	0.4453(5)	8.0(2)
O2	0.3469(5)	0.5485(4)	0.5096(5)	6.3(2)
O3	0.1651(4)	0.8508(3)	0.3475(4)	5.2(1)
04	0.3907(6)	0.9808(4)	0.3233(5)	7.0(2)
C1	0.2265(5)	0.6251(5)	0.3697(5)	3.6(2)
C2	0.2344(7)	0.5470(5)	0.3705(6)	4.6(2)
C3	0.2941(7)	0.5020(5)	0.4428(7)	5.4(2)
C4	0.407(1)	0.5108(7)	0.5884(8)	9.2(4)
C5	0.0207(7)	0.8234(5)	0.4300(7)	5.7(2)
C6	0.1110(8)	0.8766(5)	0.4221(7)	6.6(3)
C7	0.1257(8)	0.8830(6)	0.2583(8)	7.6(3)
C8	0.0676(8)	0.6842(6)	0.5442(7)	6.5(3)
C9	0.073(1)	0.5938(7)	0.5496(8)	10.0(4)
C10	0.1594(9)	0.7216(8)	0.6068(8)	9.2(4)
C11	-0.0491(7)	0.6706(6)	0.3517(7)	6.2(3)
C12	-0.0633(8)	0.7008(7)	0.2526(7)	7.3(3)
C13	-0.1505(7)	0.6769(8)	0.3922(9)	10.4(4)
C14	0.3992(7)	0.8482(5)	0.2834(6)	5.0(2)
C15	0.4088(7)	0.9059(5)	0.3639(7)	5.2(2)
C16	0.4165(9)	1.0428(6)	0.3859(8)	7.6(3)
C17	0.4736(6)	0.7058(5)	0.3909(7)	5.2(2)
C18	0.4714(8)	0.7332(6)	0.4895(7)	6.6(3)
C19	0.5792(7)	0.7164(7)	0.3624(9)	8.2(3)
C20	0.3746(7)	0.7012(5)	0.1936(7)	5.5(2)
C21	0.2840(8)	0.7268(6)	0.1205(7)	6.9(3)
C22	0.3828(8)	0.6105(6)	0.1948(7)	6.9 (3)

tion parameters are summarized in Table 4. Intensity data were corrected for Lorentz and polarization effects. An empirical absorption correction was applied; the minimal transmissions were 77.2% (for $\mathbf{8}), 95.3\%$ (for $\mathbf{12}), and <math display="inline">70.3\%$ (for 23). The structures were solved by direct methods (SHELXS-86) for 8 and 23 and by the Patterson method $(SHELXS-86,\,DIRDIF)$ for 12. In the case of 12, there is one molecule of CH_2Cl_2 in the asymmetric unit. The SbF_6 anion of compound 23 reveals disorder in the octahedral plane with the disordered positions rotated by ca. 45° in the plane; a weighting factor of 0.4 was used for the refinement. The position of the metal-bonded hydrogen atom of 8 was taken from a difference-Fourier synthesis. The positions of all other hydrogen atoms were calculated according to ideal geometry (distance of C–H set at 0.95 Å) and were refined by the riding method. Atomic coordinates (see Tables 5-7) and anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least squares. For other details see Table 4.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (SFB 347) and the Fonds der Chemischen Industrie for financial support, the Fonds in particular for a Doktorandenstipendium for M.S. We also gratefully acknowledge support by Mrs. A. Burger (experimental assistance), Dr. W. Buchner, Dr. M. Schäfer, and Mrs. M.-L. Schäfer (NMR spectra), Mrs. U. Neumann and Mr. C. P. Kneis (elemental analyses), and Degussa AG (chemicals).

Supporting Information Available: Drawings showing the atom-numbering schemes, and tables of crystal data, bond distances, bond angles, positional parameters, and general displacement parameter expressions of compounds 8, 12, and 23 (25 pages). Ordering information is given on any current masthead page.

OM950109T