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a b s t r a c t

Two new D1-pyrroline ligands and their corresponding boron complexes have been synthesized and
characterized. Their luminescent properties were investigated, the boron complexes emitting brightly
around 410 nm. The presence of the exocyclic double bond has no influence on their electronic prop-
erties, meaning that this part of the complex could be used to fine tune their properties without dis-
turbing their fluorescence.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The development of innovative fluorescent dyes is of great sig-
nificance, given their potential applications as labels in biomedical
analysis [1], molecular sensors [2,3], and light emitting devices
[4,5]. Boron dipyrromethene (BODIPY) [6e8] and azadipyrrome-
thene (aza-BODIPY) [6,9e12] dyes (Fig. 1) have arisen as very
promising due to their outstanding chemical and photophysical
properties [8]. Their chemical versatility allowed a variety of ap-
plications covering from biolabeling [13] to solar cells [14] and
nanoparticle engineering [15]. Nevertheless, the synthesis of such
dyes remains tedious, involving linear stepwise syntheses with
relatively low global yields [11]. Recently, the search for alternative
fluorescent dyes led to a new family of fluorescent boron com-
plexes, based onN- and O-donor ligands, so-called boranils [16e22]
(Fig. 1). This kind of organoboron complexes is easily synthesized,
potentially on a large scale. They can be modified using common
reaction procedures, which allow a fine-tuning of their photo-
physical properties in order to adapt them to a given application
[11,23,24].
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We disclose here the straightforward synthesis of versatile
boranils 1 and 2 (Fig. 2) based on a D1-pyrroline core. These com-
plexes were obtained from common precursors, and could easily be
modified to be used as scaffolds for connecting an additional
chromophoric moiety or reactive centre.
2. Material and methods

2.1. General

Melting points were measured in a Reichert Thermovar appa-
ratus fitted with a microscope and are uncorrected. NMR spectra
were recorded with Bruker DRX 300 spectrometers (300 for 1H,
75 MHz for 13C and 282 MHz for 19F), in CDCl3 as solvent, if not
stated otherwise. Chemical shifts (d) are reported in ppm and
coupling constants (J) in Hz; internal standard was residual peak of
the solvent. Unequivocal 13C assignments were made with the aid
of 2D gHSQC and gHMBC (delays for one-bond and long-range J C/H
couplings were optimised for 145 and 7 Hz, respectively) experi-
ments. Positive-ion ESI mass spectra were acquired using a Q-TOF 2
instrument [Nitrogen was used as nebuliser gas and argon as
collision gas. The needle voltage was set at 3000 V, with the ion
source at 80 �C and desolvation temperature at 150 �C. Cone voltage
was 35 V]. High resolution mass spectra analysis (HRMS-ESIþ) were
performed on a microTOF (focus) mass spectrometer. Ions were
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Fig. 1. BODIPY and boranil chelating complexes.
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generated using an ApolloII (ESI) source. Ionizationwas achieved by
electrospray, using a voltage of 4500 V applied to the needle, and a
counter voltage between 100 and 150 V applied to the capillary.
Elemental analyses were obtained with Carlo Erba 1108 and LECO
932 CHNS analysers. Preparative thin-layer chromatography was
performed with Merck silica gel (60 DGF254). Column chromatog-
raphy was performed with Merck silica gel 60 (70�230 mesh). All
other chemicals and solvents used were obtained from commercial
sources and were either used as received or dried by standard
procedures.

Compounds 3 [25], 4 [11], 5 [26], 6 [27], 7 [28], 8 [29], 9 [30],
have already been described, and their spectroscopic data were
consistent with the literature.

2.2. General procedures

2.2.1. General procedure for the synthesis of compounds 3, 6 and 7
An aqueous solution of sodium hydroxide (30%, 25 mL) was

slowly added to a methanol solution (30 mL) of the appropriate
acetophenone (5.0 mmol). After the solution had been cooled to
room temperature, benzaldehyde or cinnamaldehyde (6.0 mmol)
was added. The mixture was stirred at room temperature for 20 h
and was then poured into water (100 mL), ice (100 g), and conc.
hydrochloric acid (pH adjusted to ca. 2). The obtained solid was
removed by filtration, dissolved in dichloromethane (50 mL), and
washed with an aqueous solution of sodium hydrogen carbonate
(5%, 30 mL). The organic layer was collected and dried with anhy-
drous sodium sulfate, and the solution was concentrated to dry-
ness. The residue was recrystallized from ethanol.

2.2.2. General procedure for the synthesis of compounds 4, 8 and 9
To a solution of the appropriate substrate (1 equiv.) in nitro-

methane (so that final concentration is 0.3 mol.L�1) at room tem-
perature, 1,8-diazabicyclo[5.4.0]undec-7-ene (0.2 equiv.) was
added dropwise. The resulting solution was stirred for 2 h at room
temperature, and concentrated under vacuum. The residue was
purified by flash chromatography [(petroleum ether/EtOAc 9:1)] to
afford pure compounds 4, 8 and 9.

2.2.3. General procedure for the synthesis of compounds 5, 10 and
11

2.2.3.1. Procedure A. To a stirred solution of nitro derivative 4, 8 or
9 (1 equiv.) in THF/MeOH (2/1) were added acetic acid (16 equiv.)
Fig. 2. D1-Pyrroline based boranils 1 and 2.
and Fe (45 equiv.) successively at room temperature, and the
resulting mixture was heated at 65 �C for 10 h under nitrogen at-
mosphere. After cooling down to room temperature, the reaction
mixture was filtrated through celite, rinsed with AcOEt. The whole
mixture was washed with a saturated aqueous solution of NaHCO3,
brine, dried over Na2SO4 and concentrated under reduced pressure.
The residue was purified by silica flash column chromatography
[petroleum ether/EtOAc (8:2)].

2.2.3.2. Procedure B. Compound 4, 8 or 9 (1 equiv.), zinc powder
(10 equiv.), ammonium acetate (10 equiv.) and dry methanol (so
that final concentration of Michael adduct is 0.1 mol L�1) were
added to a flask under nitrogen. The slurry was stirred at room
temperature for 12 h. Then the solid was removed by filtration and
the solvent evaporated under reduced pressure affording the crude
product, which was purified by silica flash column chromatography
[petroleum ether/EtOAc (9:1)].

2.2.4. General procedure for the synthesis of compounds 1 and 2
The appropriate D1-pyrroline 10 or 11 (1 equiv) was dissolved in

dry 1,2-dichloroethane (so that the concentration is 0.04 mol.L�1).
Dry triethylamine (10 equiv) was added, and the resulting solution
was stirred for 10 min at 80 �C. Boron trifluoride-diethyl etherate
(18 equiv)was added dropwise and the final solutionwas stirred for
30 min at 80 �C under nitrogen atmosphere and then cooled to
room temperature. CH2Cl2 (4 mL) was added and the crudemixture
was washed with water (3 � 2 mL). The organic layer was sepa-
rated, dried over Na2SO4 and evaporated to dryness. The residue
was purified by silica flash column chromatography [petroleum
ether: EtOAc (7:3)] to afford the pure compounds.

2.3. Synthesis

2.3.1. 2-(2-Hydroxyphenyl)-4-phenyl-D1-pyrroline 10
Employing the general procedure B and using 1-(2-

hydroxyphenyl)-4-nitro-3-phenylbutan-1-one 8 (59 mg,
0.21 mmol), ammonium acetate (158 mg, 2.06 mmol), and zinc
powder (134 mg, 2.06 mmol) in dry methanol (1.2 mL) gave pure 2-
(2-hydroxyphenyl)-4-phenyl-D1-pyrroline 10 (35 mg, 0.15 mmol).
Yield: 60%; pale brown solid; mp 91e93 �C; 1H NMR (300 MHz,
CDCl3) d 7.44-7.16 (m, 7H, H-40, H-60, H-200, H-600, H-300, H-500, H-400),
7.03 (d, J ¼ 8.2 Hz, 1H, H-30), 6.86 (dd, J ¼ 7.5, 7.5 Hz, 1H, H-50), 4.53
(dd, J ¼ 16.1, 8.2 Hz, 1H, H-5), 4.13 (dd, J ¼ 16.1, 5.6 Hz, 1H, H-5),
3.72e3.45 (m, 2H, H-4, H-3), 3.15 (dd, J ¼ 16.6, 5.6 Hz, 1H, H-3). 13C
NMR (75 MHz, CDCl3) d 176.1, 160.9, 144.3, 132.5, 129.2, 128.8, 126.8,
126.7, 118.3, 117.2, 116.8, 67.7, 43.7, 41.2. ESI(þ)�MS: m/z: 238.1
[MþH]þ. ESI(þ)�HRMS calcd. for C16H16NO: 238.1226, found:
238.1225.

2.3.2. (E)-2-(2-Hydroxyphenyl)-4-styryl-D1-pyrroline 11
Employing the general procedure B and using (E)-1-(2-

hydroxyphenyl)-3-(nitromethyl)-5-phenylpent-4-en-1-one 9
(36 mg, 0.11 mmol), ammonium acetate (86 mg, 1.12 mmol), and
zinc powder (73 mg,1.12 mmol) in dry methanol (1.2 mL) gave pure
(E)-2-(2-hydroxyphenyl)-4-styryl-D1-pyrroline 11 (20 mg,
0.076 mmol). Yield: 68%; pale green oil; 1H NMR (300 MHz, CDCl3)
d 13.71 (s,1H, OH), 7.58e7.14 (m, 7H, H-40, H-60, H-200, H-600, H-300, H-
500, H-400), 7.02 (d, J¼ 8.2 Hz,1H, H-30), 6.87 (dd, J¼ 7.5, 7.5 Hz,1H, H-
50), 6.49 (d, J ¼ 15.8 Hz, 1H, H-b), 6.22 (dd, J ¼ 15.8, 8.2 Hz, 1H, H-a),
4.34 (dd, J ¼ 16.6, 7.6 Hz, 1H, H-5), 3.93 (dd, J ¼ 16.6, 5.4 Hz, 1H, H-
5), 3.45e3.15 (m, 2H, H-4, H-3), 3.01e2.89 (m, 1H, H-3). 13C NMR
(75 MHz, CDCl3) d 176.4, 160.9, 136.9, 132.5, 131.4, 130.6, 129.3,
128.6, 127.5, 126.1, 118.3, 117.2, 116.9, 65.5, 41.6, 39.8. ESI(þ)�MS:m/
z: 264.1 [MþH]þ. Anal. Calcd for C18H17NO: C 82.10, H 6.51, N 5.32;
found: C 82.25, H 6.82, N 5.38%.



Fig. 3. Molecular structure of compound 4 (only one enantiomer is shown for clarity)
(a) and unit cell content (b). Thermal ellipsoids are shown at the 50% probability level,
hydrogen atoms are shown with an arbitrary radius (0.30Å). C, grey; O, red; N, blue; H,
white. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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2.3.3. 5,5-difluoro-2-phenyl-1,2,3,5-tetrahydrobenzo[e]pyrrolo[1,2-
c][1,3,2]oxazaborinin-4-ium-5-uide 1

Employing the general procedure and using 2-(2-
hydroxyphenyl)-4-phenyl-D1-pyrroline 10 (70 mg, 0.295 mmol),
triethylamine (299 mg, 0.41 mL, 2.95 mmol), and boron trifluoride-
diethyl etherate (754 mg, 0.65 mL, 5.31 mmol) in dry 1,2-
dichloroethane (1.5 mL) gave pure 5,5-difluoro-2-phenyl-1,2,3,5-
tetrahydrobenzo[e]pyrrolo[1,2-c][1,3,2]oxazaborinin-4-ium-5-uide
1 (79 mg, 0.277 mmol). Yield: 94%; white solid; mp 123e125 �C; 1H
NMR (300 MHz, CDCl3) d 7.57 (ddd, 1H, J ¼ J ¼ 8.5, 7.5, 1.2 Hz, H-40),
7.50-7.19 (m, 6H, H-60, H-200, H-600, H-300, H-500, H-400), 7.12 (d,
J ¼ 8.5 Hz, 1H, H-30), 6.95 (dd, J ¼ 7.5, 7.5 Hz, 1H, H-50), 4.58 (dd,
J ¼ 15.0, 8.2 Hz, 1H, H-5), 4.27 (dd, J ¼ 15.0, 5.7 Hz, 1H, H-5),
3.96e3.78 (m, 2H, H-4, H-3), 3.41 (dd, J ¼ 18.1, 5.7 Hz, 1H, H-3). 13C
NMR (75 MHz, CDCl3) d 175.8, 159.3, 140.8, 137.9, 129.2 (2 � C),
128.9, 127.7, 126.7 (2 � C), 119.8, 119.7, 112.9, 60.3, 42.0, 39.9. 19F
NMR (282 MHz, CDCl3) d�138.03 (dq, J ¼ 29.5, 14.4 Hz, 1F), -138.68
(dq, J¼ 29.5,14.4 Hz,1F). ESI(þ)-MS:m/z: 266.1 [M�F]þ. Anal. Calcd
for C18H17NO: C 67.41, H 4.95, N 4.91; found: C 67.26, H 5.03, N
5.02%.
2.3.4. (E)-5,5-difluoro-2-styryl-1,2,3,5-tetrahydrobenzo[e]pyrrolo
[1,2-c][1,3,2]oxazaborinin -4-ium-5-uide 2

Employing the general procedure and using (E)-2-(2-
hydroxyphenyl)-4-styryl-D1-pyrroline 11 (42 mg, 0.159 mmol),
triethylamine (161 mg, 0.22 mL, 1.595 mmol), and boron
trifluoride-diethyl etherate (408 mg, 0.35 mL, 2.87 mmol) in dry
1,2-dichloroethane (1.0 mL) gave pure (E)-5,5-difluoro-2-styryl-
1,2,3,5-tetrahydrobenzo[e]pyrrolo[1,2-c][1,3,2]oxazaborinin-4-
ium-5-uide 2 (45 mg, 0.143 mmol). Yield: 90%; pale brown solid;
mp 129e131 �C; 1H NMR (300 MHz, CDCl3) d 7.59 (ddd, J ¼ 8.4, 7.4,
1.2 Hz, 1H, H-40), 7.43 (dd, J¼ 7.8, 1.2 Hz, 1H, H-60), 7.42-7.22 (m, 5H,
H-200, H-600, H-300, H-500, H-400), 7.14 (d, J ¼ 8.4 Hz, 1H, H-30), 6.97 (dd,
J ¼ 7.4, 7.8 Hz, 1H, H-50), 6.58 (d, J ¼ 15.7 Hz, 1H, H-b), 6.21 (dd,
J¼ 15.7, 8.1 Hz,1H, H-a), 4.44 (dd, J¼ 14.8, 8.2 Hz,1H, H-5), 4.08 (dd,
J ¼ 14.8, 6.5 Hz, 1H, H-5), 3.77-3.46 (m, 2H, H-4, H-3), 3.24 (dd,
J ¼ 17.8, 6.0 Hz, 1H, H-3). 13C NMR (75 MHz, CDCl3) d 176.0, 159.3,
137.9, 135.9, 132.8, 128.9, 128.7 (2 � C), 128.1, 127.7, 126.3 (2 � C),
119.9, 119.7, 113.0, 58.7, 40.3, 38.5. 19F NMR (282 MHz, CDCl3)
d �161.25 (dq, J ¼ 29.3, 14.2 Hz), -161.82 (dq, J ¼ 28.3, 14.2 Hz).
ESI(þ)�MS: m/z: 292.2 [M�F]þ. ESI(þ)�HRMS calcd. for
C18H16BFNO: 292.1307; found: 292.1303.
3. Results and discussion

3.1. Synthesis and characterization

The synthesis of boranils 1 and 2 involved the preparation of the
D1-pyrroline core. As this synthesis proved to be temperamental it
was first optimized on a model compound (Scheme 1).
Scheme 1. Optimization of the conditions on a model compound.
Michael addition of nitromethane to chalcone 3 was attempted
using two different kinds of base sources, a secondary amine
(Et2NH) and an amidine (diazabicyclo[5.4.0]undec-7-ene). This
second one gave the better yields. The structure of the racemic
product 4 was confirmed by single crystal X-ray diffraction (Fig. 3).

The reduction of the nitro group could lead to side reactions, due
to the presence of a ketone and to the in situ formation of an imine.
To accomplish this reduction two experimental conditions already
presented in the literature were tested [31,32]: i) zinc, ammonium
acetate, palladium on carbon (10%w/w), MeOH,12 h, rt; and ii) iron,
acetic acid, THF:MeOH/(2:1), 12 h, 65 �C. The best results were
obtained using iron as the reducing agent and acetic acid as the
proton source. D1-Pyrroline derivative 5 was obtained as a racemic
mixture in 77% yield.

The boron complexes 1 and 2 were obtained following this
optimized strategy (Scheme 2). Michael addition of nitromethane
to 20-hydroxychalcone 6 [30] or 20-hydroxycinamylideneaceto
phenone 7 [26] using DBU as base gave the corresponding Michael
adducts 8 and 9 in nearly quantitative yield [33].

For the synthesis of D1-pyrroline derivatives 10 and 11, the
reduction of the nitro group followed by nucleophilic intra-
molecular ring cyclization/dehydration sequence was attempted
using the iron/acetic acid strategy. Unfortunately this strategy was
not the best for these derivatives. The reduction with zinc and
ammonium acetate in methanol gave better yields and an easier
purification. The use of palladiumwas avoided due to the potential
reduction of the double bond present in compound 11. The corre-
sponding D1-pyrrolines 10 and 11 were obtained in 60% and 68%
yields, respectively.

Boron complexation was achieved using BF3eOEt2 and anhy-
drous triethylamine in 1,2-dichloroethane at 40 �C, to give com-
plexes 1 and 2 in 94% and 90% yield, respectively. The structure of
the complexes was confirmed by NMR, MS, and elemental analysis.
Scheme 2. Synthesis of the boranil derivatives 1 and 2.



Fig. 4. Molecular structure of compound 1 (only one enantiomer is shown for clarity)
(a) and unit cell content (b). Thermal ellipsoids are shown at the 50% probability level,
hydrogen atoms are shownwith an arbitrary radius (0.30Å). C, grey; O, red; N, blue; H,
white; B, pink; F, yellow. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Selected Optical data measured in dichloromethane.

Dye labs (nm) ε(M�1 cm�1)a lem (nm)b 4f (%)c

10 313 5300 n.a. <0.1
11 314 7300 n.a. <0.1
1 343 4000 410 2.6
2 341 5700 409 2.6

a
ε (M�1 cm�1) is determined by linear regression of 4 measurements in the range

10-4 M to 10-6 M in dichloromethane.
b Excitation at 340 nm.
c Quantum yields are determined with excitation at 340 nm, by linear regression

of 4 measurements in the range of absorption 0 to 0.2, by comparison with fluo-
rescein (quantum yield 0.90 at excitation 470 nm in a solution of NaOH 0.01 M in
water).
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Complex 1 gave single crystals by slow evaporation of a satu-
rated solution in dichloromethane (Fig. 4). Analysis of the crystal
structure confirmed the structure of the compound, with the
planarity of the 6-membered ring containing the boron atom. The
D1-pyrroline core disrupts the conjugation between the emissive
centre and the phenyl ring, which should prevent any bath-
ochromic effect.
3.2. Absorption and emission properties

Photophysical datawere recorded in dichloromethane for all the
new fluorophores (Table 1 and Fig. 5).
Fig. 5. Absorption (0.1 mM) spectra of dyes 10, 11, 1 and 2, normalized excitation
(0.001 mM, emission at 410 nm) and normalized emission (0.001 mM, excitation at
340 nm) spectra of dyes 1 and 2 in dichloromethane.
Schiff-base ligands 10 and 11 present an absorption band cen-
tred at ca. 310 nm. The absorption spectra of complexes 1 and 2
exhibit a major absorption band at ca. 340 nm. The coordination of
10 and 11 with boron seems to have a bathochromic effect on the
absorption properties, without interfering much with their in-
tensities. Even if some Schiff-base containing compounds have
been reported to be luminescent, ligands 10 and 11 are non-
emissive in solution. On the contrary, boron complexes 1 and 2
are photoluminescent with a maximum emission at 410 nm, with
low quantum yields of 2.6%. The introduction of a fluoroborate
centre probably restricts the non-emissive relaxation pathways,
such as internal charge transfer and torsional vibrations, thus
promoting the fluorescence. The excitation spectra of 1 and 2match
their absorption spectra, and are nearly mirror images of their
emission spectra, which indicate that the emission happens
through fluorescence from S1 to S0 energy levels. The conjugation
between the boron complex and the phenyl ring or the styrene is
disrupted by the D1-pyrroline core, thus the introduction of the
extra double bond has almost no effect on the absorption and
emission properties of the fluorophores.

4. Conclusion

In conclusion, the synthesis of D1-pyrrolines boranil complexes
has been successfully achieved, leading to new fluorophores in a
straightforward manner and with high overall yields. Efforts to
extend their emission to the red part of the electromagnetic spec-
trum are currently underway. In order to tune their interactionwith
biological systems, an enantioselective version of these new fluo-
rophores is also being developed in our laboratory.
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990044 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge at www.ccdc.cam.a
c.uk/conts/retrieving.html (or from the Cambridge Crystallographic
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