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When gross deviations from parametric assumptions are observed, conventional
data transformations are often applied with little regard for substantive theoreti-
cal implications. One such transformation involves using the logarithm of posi-
tively skewed dependent variables. Log transformations were shown to severely
decrease estimates of true moderator effects using moderated regression proce-
dures in a Monte Carlo simulation. Estimates of moderator effect sizes were sub-
stantially better estimates of the true latent moderator effect (i.e., larger by a mul-
tiple of 2.6 to 534) when estimated using a simple percentile bootstrap procedure
in the original, positively skewed data. Conclusions with regard to the presence or
absence of a true moderator effect using a simple bootstrap procedure were unaf-
fected by the violation of parametric assumptions in the original, positively
skewed data. In contrast, moderated regression analysis performed on a log-
transformed dependent variable severely increased Type-II error. Implications are
drawn for applied psychological and management research.

At one time or another, almost all investigators in applied psychological and manage-
ment research have been concerned by the assumptions required of common paramet-
ric statistical tests. Investigators typically assume that their samples were drawn from a
single population and rely on the power of the central limit theorem and other paramet-
ric assumptions to draw inferences about latent relationships within that population.
When violations of parametric assumptions are severe, investigators often use some
data transformation designed to minimize the violation. For example, all three empiri-
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cal studies reported in a recent specialAcademy of Management Journalforum on
managerial compensation performed log transformations on compensation data
(Conyon & Peck, 1998; Finkelstein & Boyd, 1998; Sanders & Carpenter, 1998) with
no mention of the purpose or rationale behind these transformations. Presumably, the
log transformations were done to address the presence of heteroskedasticity, that is,
the lack of independence between the mean ofYgivenX (Y Xi ) and the variance ofY
givenX (σ y iX2 ) that coincides with extreme positive outliers or severe positive skew
(Winer, 1974). Winer’s 1974 text has had a pervasive influence on organizational
research as reflected in the fact that it is the most highly cited publication in theSocial
Science Citation Index(Institute for Scientific Information, 1999) between 1957 and
1997 (J. L. Bennett, personal communication, July 12, 1999)—it is difficult to under-
estimate the effect that Winer’s text (and its subsequent updates) has had on organiza-
tional researchers. It could be argued that performing log transformations on posi-
tively skewed dependent variables has become a convention within applied
psychology and management research.

One of the following characteristics is required of studies using parametric ordinary
least squares (OLS) procedures to examine linear relationships between variablesX
andY: (a)XandYare random, bivariate normal or (b)X is fixed ande is normal, where
ei = Yi – biX1 – b0. In the former case,X is random in the sense that investigators do not
specify or control levels ofX treatment effects in advance. Instead,X values observed
occur at a frequency dictated by the population probability distribution forX. Common
survey methods employed in research examining voluntary employee turnover (e.g.,
Mobley, Griffeth, Hand, & Meglino, 1979), job satisfaction (Smith, Kendall, & Hulin,
1969), performance prediction (Bray, Campbell, & Grant, 1974; Owens & Schoen-
feldt, 1979), and executive compensation (Finkelstein & Boyd, 1998) provide exam-
ples of random-effects designs. Importantly, whenX andY are distributed bivariate
normal, probabilistic inferences (e.g., conducting hypothesis test ofH0: ρ = 0 or esti-
mating confidence intervals can be drawn due toρ’s presence in the bivariate normal
density function described in Equation 1:
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If X is not normally distributed, as in the latter case, one may still use the central
limit theorem to assumeσ y iX2 is normally distributed in order to test hypotheses about
ρ.1 In these circumstances,X is often a fixed effect that takes on values occurring in
some known frequency other than what one would have expected if values ofX were
drawn at random from the population (e.g., values ofX that the investigator selected for
purposes of manipulation). Importantly, regardless of study design, traditional para-
metric procedures cannot be used in conducting hypothesis tests or estimating CIs if
the true probability density function for prediction error (e) is unknown.

As noted above, one common violation of parametric assumptions occurs when the
variance ofY givenX (σ y iX2 ) is a function of the conditional mean (Y Xi ). Efforts
examining severely positively skewedYdistributions routinely occur in applied psy-
chological research, particularly in compensation research. Skewed compensation
distributions are caused by a number of factors, including the increasing span of pay
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ranges as the pay range midpoint increases (England & Pierson, 1990) and the extreme
levels of executive compensation typically reported in U.S. corporations.2 Both fac-
tors result in a lack of independence betweenY Xi andσ y iX2 , violating the homoske-
dasticity assumption (Winer, 1974).

Winer (1974, pp. 398-401) described a number of transformations that correct or at
least lessen violations of some parametric assumptions. Log transformations of vari-
ables demonstrating highly positive or negative skew yield a more bell-shaped fre-
quency distribution, whereY Xi andσeare relatively uncorrelated. Winer (1974,
p. 400)noted that log transforms are particularly effective in stabilizing the condi-
tional variance ofY givenX when the independence of error terms is violated due to
σ yi ik X2 2 2= or whenY has a great deal of positive skew (Olds, Mattson, & Oldeh,
1956).3

The usual effect of such transforms is to lessen the prediction error for values ofY
occurring at the extreme tail of the positively skewed dependent variable, conse-
quently increasingrxy

2 in additive models used to predict logY. TheSYSTAT6.0 for Win-
dows: Statistics(SPSS, 1996, pp. 252-257) manual described one such example in
which gross domestic product (GDP) per capita (X) was used to predict military spend-
ing (Y) in a sample of 57 countries. In this example,rxy

2 goes from .417 to .734 in the
presence of log transformation.

Importantly, the resultant model using the transformed data isYmil$ =
10 0 1 10 10β β+ +log logXGDP e, which does not technically adhere to OLS characteristics (e.g.,
unbiased, minimum-variance parameter estimates). This model is perfectly service-
able if prediction is the investigator’s main concern—inferences about the accuracy of
prediction can be drawn fromrxy. Note that probabilistic inferences cannot be drawn
for r xy, b0, b1, or $Y unless one assumes that the log10e term in Ymil$ =
10 0 1 10 10β β+ +log logXGDP e is normally distributed. We are aware of no research stream
(theory based or otherwise) that holds that log10 of e is normal.4 Regardless, the model
must have some theoretical meaning if explanation is the investigator’s main concern.
For example, it is unclear what theory or policy implications should be drawn from
finding that the log of salary is differentially related to organizational tenure for men
and women.5 The authors are unaware of any studies examining interactive models
providing a theoretical rationale justifying nonlinear (monotonic or nonmonotonic)
transformations in applied psychological or management research (although concepts
like the diminishing marginal utility of money may provide such a rationale in the
future). Enhanced statistical elegance achieved via nonlinear transformations has not
been accompanied by theory-based rationale justifying its use.

Nonlinear transformations can cause more uncertainty in interpreting tests of mod-
eration than they resolve. Investigators generally need to estimate sample sizes
required for replications and extensions of past research. Investigators examining pre-
viously reported data on the GDP–military spending relationships will solve
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for N, estimating that they need a sample size, whenrxy
2 = .417, that is approximately

four times as large as the sample required whenrxy
2 = .734 atα = .05. Again, absent

theoretical rationale, arguments can be mounted for either estimate.
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Importantly, nonlinear (monotonic and nonmonotonic) transformations of original
data create a number of problems for OLS applications used to detect moderator
effects. Busemeyer and Jones (1983) demonstrated monotonic transformations could
be found that causeYvalues generated from a truly additive model (e.g.,$Y = b0 + b1X1

+ b2X2) to yield support for a multiplicative model (e.g.,$Y = b0 + b1X1 + b2X2 + b3X1X2)
and vice versa. Hence, reports of significantand nonsignificant interaction effects
after having performed log transformation onY remain open to alternative interpreta-
tion (cf. Henderson & Frederickson, 1996; Sanders & Carpenter, 1998).

In sum, investigators often face circumstances in which data are clearly not bivari-
ate normal,e is not normal, and/or heteroskedasticity is present. Nonlinear transfor-
mations generate unknown levels of distortion in the many estimates of moderator
effects required to test theories in management and applied psychology (Busemeyer &
Jones, 1983; Russell & Bobko, 1992). Investigators’continued use of nonlinear trans-
forms to test moderator effects (e.g., Henderson & Frederickson, 1996; Kuhn &
Sweetman, 1998; Sanders & Carpenter, 1998) will result in literatures characterized
by mixed findings containing frequent Type-I and -II errors. This will be especially
true when other investigators do not use nonlinear transformations in studying the
same phenomena (e.g., Gomez-Mejia, Tosi, & Hinkin, 1987). Severe consequences
for theory development will result.

The bootstrap is a relatively new method of empirically estimating characteristics
of population distributions from sample data (Efron, 1979) that holds remarkable
implications for these applied research issues. Unfortunately, Mooney and Duval
(1993) noted that “the bootstrap is . . . foreign to most social scientists schooled in the
traditional parametric approach to inference” (p. 27). This study briefly reviews the
bootstrap literature and reports the results of a Monte Carlo simulation demonstrating
how log transformations can yield spuriously low estimates of moderator effect sizes
(i.e., ∆R2). Finally, a bootstrap approach to detect interaction effects when authors
would otherwise employ log transformations and traditional OLS techniques is pre-
sented, and implications for applied psychological and management research are
offered.

Bootstrap Estimation Procedures

Bootstrapping holds promise as a statistical estimation technique yielding precise
estimates of population distributions from sample data. Bootstrapping estimates the
population distribution of a statistic (e.g.,rxy) by iteratively resampling cases from a set
of observed data. Basically,B bootstrap samples of sizeN are taken with replacement
from the original sample of sizeNand saved to a file. An investigation usingB= 1,000
bootstrap samples of sizeN is able to approximate the actual sampling distribution that
would have been obtained if multiple independent samples of sizeNwere drawn from
the population (Efron & Tibshirani, 1993).

There are many advantages to using the bootstrap technique. First, it is not
restricted by the normality assumptions of parametric tests. The percentile bootstrap-
ping method (Efron & Tibshirani, 1993, chapter 13) generates information about the
latent population distribution, permitting estimation of CIs directly from the boot-
strapped sampling distribution (e.g., ifB= 1,000 bootstrap samples are taken, the boot-
strap correlationsrb representing the 25th and 975th largest values constitute the lower
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and upper points of a 95% CI). The graphical interpretation ofrb frequency distribu-
tions also yields insight into characteristics of the latent population distribution
(Efron & Tibshirani, 1993). When the sample is drawn from a population with a single
value ofρ, the central limit theorem dictates that therb frequency distribution will rap-
idly approximate the normal distribution asB andN increase. A multimodalrb fre-
quency distribution would suggest that the sample was drawn from multiple popula-
tions, each with its own value ofρ. Second, information about the form of the original
sample is retained with no loss of distributional information. Rasmussen (1987) noted
that loss of information does occur when nonparametric techniques convert data to
ranks. Lunneborg (1985) described bootstrapping as falling between parametric and
nonparametric procedures for making probabilistic inferences.

Rasmussen (1987) presented the following simple example of a bootstrap proce-
dure. Suppose a researcher wants to test the null hypothesis thatρxy = 0 between
first-year grade point averages (GPA) and Graduate Record Exam (GRE) scores using
data obtained from 10 graduate students (H0: ρGPA, GRE= 0). First, an initial bootstrap
sample (B1) is randomly drawn with replacement from these 10 observations, yielding
the possibility of some observations being represented more than once in the bootstrap
sample, whereas other observations may not be included. A single bootstrap sample
may include the following cases: 5, 2, 8, 6, 2, 7, 9, 6, 1, and 2. Note that due to random
sampling with replacement, Case 2 was included more than once, whereas Case 3 was
not included in this first bootstrap sample (B1). The 10 cases may result in a correlation
of, say, .59. This procedure is repeated a large number of times (e.g.,B = 1,000), and
eachrb is saved to a separate file. Second, the bootstrap correlations (rb) are rank
ordered with the 25th and 975th correlations representing 95% CI end points. Finally,
the null hypothesisH0: ρGPA, GRE= 0 is tested by determining whether zero falls within
the CI (Rasmussen, 1987).

Studies examining similarities in results obtained from bootstrap and normal the-
ory approaches when parametric assumptions are met test the bootstrap’s ability to
estimate true latent population distributions (e.g., Diaconis & Efron, 1983; Efron,
1985, 1986; Lunneborg, 1985). These studies resulted in bootstrap statistics (e.g., esti-
mates of CIs) that were extremely close to those generated from parametric
approaches. Bickel and Freedman (1981; Freedman, 1981) demonstrated that the
bootstrap was asymptotically valid for many statistics with known population prob-
ability distributions (e.g.,t and OLS regression statistics). However, the procedure is
perhaps of most value in drawing inferences about statistics with unknown popula-
tion probability distributions (e.g., medians or mixed samples drawn from multiple
populations).

Some issues remain unresolved in using bootstrapping to conduct hypothesis test-
ing, most revolving around the relative accuracy of parametric versus bootstrap proce-
dures in estimating probability intervals at the extreme tails of known (i.e., normal)
distributions. However, the simple percentile bootstrap method of estimating CIs
described above provides “good theoretical coverage properties as well as reasonable
stability in practice” (Efron & Tibshirani, 1993, p. 169). “Good theoretical coverage”
refers to CIs that (a) accurately estimate the probability of the population parameter
falling within the CI and (b) divide coverage error equally across the two tails.6

Empirical comparisons of bootstrap and traditional OLS regression procedures’
abilities to detect moderator effects when the dependent variable is positively skewed
are presented below.
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Monte Carlo Simulation

Design

In typical random-effects designs, investigators do not know how independent vari-
ables and prediction error are distributed. In fixed-effects designs, investigators typi-
cally control or specify independent variable levels, although the dependentYdistribu-
tion will be a function of the independent variable(s) and prediction error (e)
distributions. Classical measurement theory presumesYi =YTi

+ e, whereYTi
is the true

latent value ofYfor person i. WhenYTi
is a function of someX (e.g.,Y= b0 + b1X1 + eor

Y = b0 + b1X1 + b2X2 + b3X1X2 + e), X1, X2, or emust be nonnormal in order for the
observedYi to be nonnormally distributed. Consequently, to simulate the kinds of data
that investigators might encounter in either random- or fixed-effects designs, data
were generated in nine Monte Carlo simulations in which independent variablesX1

andX2 and prediction error (e) systematically varied across normal, uniform, and chi-
square distributions. Normal distributions were selected to simulate multivariate nor-
mal conditions in random-effects designs. Uniform distributions were selected to
simulate fixed-effects experimental designs. Chi-square distributions forX and e
simulated positively skewedY distributions such as those found in compensation
research.

Sample

Simulation data were generated for combinations ofX1, X2, ande distributions
using the SYSTAT9 (SPSS, 1996) computer package. Five thousand samples ofN =
113 pairedX1, X2 observations were drawn at random from all possible combinations
of normal, uniform, and chi-square population distributionsX1,X2, ande(Guzzo, Jette,
& Katzell [1985] reported a meanN = 113 across studies in a meta-analysis of
compensation-based intervention programs). Results are only reported for conditions
in which X1 andX2 were drawn from identical population distributions, although the
results whenX1 andX2 were drawn from different population distributions were con-
sistent with those reported below.7 Note that 5,000 samples ofN= 113 were drawn for
every combination ofX,Y, andedistributions described below as per Mooney’s (1997)
suggestions for conducting Monte Carlo simulations, resulting in nine sets of 5,000
samples ofN = 113. All aspects of the Monte Carlo simulation were replicated using
5,000 samples ofN= 226 andN= 56 (i.e., using samples twice and one half as large as
N = 113). Identical patterns of results emerged and are available from the first author
on request.

WhenX1 andX2 observations were drawn at random from a normal population dis-
tribution,µ andσ were set atµ = 3 andσ = 1. VariablesX1 andX2 within each data set
were then rounded to the nearest integer (yielding values ranging from 1 to 5, i.e.,
5-point Likert scales) in order to simulate measurement circumstances commonly
encountered in applied psychological and management research. UniformX1 andX2

data sets were drawn from a population containing integer values between 1 and 5,
inclusive. AdditionalX1 andX2 data sets were drawn from chi-square distributions
with three degrees of freedom. These steps resulted in nine Monte Carlo data sets when
the three possibleX distributions (normal, uniform, chi-square) were combined with
the three possibleedistributions (normal, uniform, chi-square).

Russell, Dean / BOOTSTRAPPING MODERATED REGRESSION 171

 at UNIV OF WISCONSIN OSHKOSH on June 9, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Three dependent variables were generated within each data set to reflect large,
medium, and small effect sizes. Equations 2, 3, and 4 were used to generate values for
Y1, Y2, andY3 within each of the nine data sets:

Y1 = .75X1X2 + .25e (2)

Y2 = .50X1X2 + .50e (3)

Y3 = .25X1X2 + .75e (4)

Under the e-equals-normal condition, prediction errore was drawn from a normal
population with a mean and standard deviation set equal to the mean and standard de-
viation of theX1X2 product term with which it was paired. Under the e = uniform condi-
tion,ewas randomly drawn from a uniform population distribution ranging from 1 to
20. Under the e = chi-square condition,ewas randomly drawn from a chi-square popu-
lation distribution with 9 degrees of freedom (where 9 is the mean population value for
all X1X2 product terms regardless of sampleX1 andX2 distribution characteristics).
Hence, three dependent variables,Y1, Y2, andY3, reflecting large, medium, and small
moderator effect sizes were available to be examined within each of the nine data sets.

Analyses

All tests of interaction effects used moderated regression analysis (Bobko, 1995;
Darlington, 1968; Saunders, 1955, 1956). TheF test ofH0: ∆R2 = 0, where∆R2 =
R Rmultiplicative additive

2 2− for the equations$Y = b0 + b1X1 + b2X2 + b3X1X2 and $Y = b0 + b1X1

+ b2X2, respectively, constitutes the test of an interaction effect whenX1 andX2 are
interval scale measures. The strategy and organizational theory literatures commonly
refer to this as the Chow test (Chow, 1960).

To provide a point of reference, samples ofN = 50,000 for each combination ofX1

andX2 distribution were generated separately for purposes of estimatingE(∆R2) when
e= 0. WhenX1 andX2 were normal, uniform, and chi-square,E(∆R2) = .057, .077, and
.256, respectively. These values should be considered asymptotes or what would occur
under circumstances of perfect, error-free prediction. The addition of prediction error
will slowly decreaseE(∆R2), for example, if whenX1 and X2 are distributed as
chi-square the true prediction model isY = .1X1X2 + .9e, then clearlyE(∆R2) ≠ .256.
Regardless, it should be noted that these areexpectedvalues of∆R2 and actual values
observed might be larger or smaller whenYdoes or does not include prediction error
(e.g.,Russell&Bobko [1992]observed∆R2 tobegreater thanE[∆R2] forsomesubjects).

Results

Table 1a reports results of moderated regression analyses performed on the three
effect sizes (Y1, Y2, andY3) in the nine different combinations ofX andedistributions
(i.e., normal, uniform, and chi-squareX1 andX2 distributions paired with normal, uni-
form, and chi-squaree distributions). Moderator effect sizes are captured by the
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median∆R2 column, containing the 2,500th largest value of∆R2 obtained from the
5,000 samples ofN = 113. AlthoughF statistics testingH0: ∆R2 = 0 can be derived for
median∆R2 values, only the ones derived for normally distributed prediction error
meet parametric assumptions and are interpretable (i.e., statistics reported in bold in
Table 1a). Regardless, the 2.5 and 97.5 percentile values of∆R2 were identified within
the set of 5,000 Monte CarloN= 113 samples.8 As the expected value of theF statistic
testingH0: ∆R2 = 0 is F= 1.0, one would rejectH0 using logic that underlies simple per-
centile bootstrap applications when theF statistic

(i.e.,F1, 109=
−

− −
∆R

Rmultiplicative

2

2

4 3

1 113 4

/ ( )

( ) / ( )
)

for the moderator effect cutting off the lower 2.5% of the 5,000∆R2 is greater than 1
(i.e., whenF = 1.0 falls outside of the 95%∆R2 CI). Median values of∆R2 reported in
Table 1a for which the lower 2.5 percentile values generatedF greater than 1.0 are indi-
cated in italic.

Interestingly, profiles of∆R2 for large, medium, and small effect sizes for interpret-
able equations in Table 1a (i.e., those meeting OLS assumptions) are .047, .024, .006;
.067, .041, .009; and .221, .191, .087 forX1 andX2 distributions drawn from normal,
uniform, and chi-square populations ofX1 and X2, respectively. Not surprisingly,
smaller values of∆R2 are observed as the effect size decreases acrossY1,Y2, andY3. The
pattern of effect sizes across normal, uniform, and chi-square distributions is consis-
tent with McClelland and Judd’s (1993) demonstration that multiplicative effect sizes
are maximized in designs using extreme values ofX1 andX2. Normally distributedX1

andX2 will have the fewest extremeX1X2 observations due to low probabilities in the
extreme tails of the normal distribution. Uniform and chi-square distributions forX1

andX2 will have increasingly more frequent extreme observations in the tails of an
X1X2 distribution, respectively.

If X1,X2, or eare highly positively skewed, as they are when drawn fromχ df =3
2 popu-

lations,Y will demonstrate some skewness. Investigators following Winer’s (1974)
convention would perform a log transform onY in hope of permitting probabilistic
inferences that are possible when parametric assumptions are met. Table 1b reports
moderated regression results whenY1, Y2, andY3 were subjected to a log10 transforma-
tion for the fiveX1, X2, andecombinations involving skewed chi-square distributions
(whenX1, X2, or eare positively skewed,Y will be positively skewed). Moderated
regression effect sizes for the nontransformedY1, Y2, andY3 (Table 1a) are 2.7 to 15
times larger than effect sizes observed for log-transformedY1, Y2, andY3 (Table 1b).
Perhaps most interestingly, effect sizes for the one data set that meets parametric
assumptions (X1 andX2 distributed as chi-square,edistributed normally) go from∆R2 =
.221 to∆R2 = .032 forY1 and log10Y1, respectively; from∆R2 = .191 to∆R2 = .041 forY2

and log10Y2, respectively; and from∆R2 = .087 to∆R2 = .025 forY3 and log10Y3, respec-
tively. Hence, moderated regression effect sizes are 3.5 to 6.9 times larger and more
likely to correctly detect the true latent population moderator effect when estimated
from the nontransformed data, although investigators following convention would
have log-transformedY1, Y2, andY3 before conducting the analyses. The stronger the
moderator effect, the larger the difference between effect sizes derived from nontrans-
formed versus log-transformedYs.
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Table 1a
Monte Carlo Moderated Regression Analyses for Different X

and e Distributions: 5,000 Random Samples of N = 113
(Y1 = .75X1X2 + .25e, Y2 = .5X1X2 + .5e, and Y3 = .25X1X2 + .75e)

Median (R R Rmultiplicative additive
2 2 2− = ∆ )

X1 and X2 Distribution e Distribution
Characteristic Characteristic Rmultiplicative

2 Radditive
2 DR2

Normal: µ = 3, σ = 1, rounded Normal: e = 9, σ = 5a

to nearest integer Y1 .943 .918 .047
Y2 .786 .771 .024
Y3 .298 .288 .006

Uniform random number
between 1 and 18

Y1 .919 .893 .047
Y2 .726 .709 .025
Y3 .293 .281 .007

Chi-square: df = 9b

Y1 .943 .918 .047
Y2 .732 .712 .029
Y3 .383 .373 .008

Uniform random number: Normal: e = 9, σ = 5a

distribution from 1 to 5, Y1 .956 .920 .067
rounded to nearest integer Y2 .803 .778 .041

Y3 .360 .347 .009
Uniform random number

between 1 and 20
Y1 .960 .924 .068
Y2 .648 .616 .041
Y3 .431 .420 .009

Chi-square: df = 9b

Y1 .969 .933 .070
Y2 .713 .680 .046
Y3 .496 .484 .012

Chi-square: df = 3, rounded Normal: e = 9, σ = 5a

to nearest integer Y1 .991 .873 .221
Y2 .910 .798 .191
Y3 .561 .477 .087

Uniform random number
between 1 and 18

Y1 .992 .874 .220
Y2 .924 .815 .190
Y3 .658 .589 .086

Chi-square: df = 9b

Y1 .992 .874 .221
Y2 .939 .827 .197
Y3 .647 .561 .104

Note. N = 113 is the average N across k = 330 effect sizes reported in a meta-analysis of Guzzo,
Jette, and Katzell (1985). Data presented in bold met parametric assumptions and are interpret-
able.Results presented in italics had the 2.5 percentile value of F for ∆R2 greater than 1, hence H0:
F = 1.0 did not fall in the 95% CI.
a. M and SD for all normally distributed error terms were set to be equal to the M and SD for the
product X1X2.
b. The expected value of the chi-square distribution is equal to its df. Hence, with df = 9, the ex-
pected midpoint of the error distribution is equal to the mean of the X1X2 product term.
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In sum, moderated regression effect sizes derived from a Monte Carlo simulation of
5,000N = 113 samples drawn from normal, uniform, and chi-squareeandX distribu-
tions are 2.7 to 15 times more likely to detect true latent moderator effects (i.e., reject
H0: ∆R2 = 0) when the dependent variable hasnotbeen subjected to a log transforma-
tion. The final portion of this study demonstrates how primary researchers would
apply a simple bootstrap procedure in analyzing data obtained from a single sample
and confirming implications of the Monte Carlo results (i.e., that inferences drawn
from bootstrap-generated CIs about moderator effects are expected to exhibit less
Type-II error).

Bootstrap Demonstration

Samples

As a rule, researchers generally face circumstances in which they have data gath-
ered from a single sample, not 5,000 samples. Hence, to simulate what individual
researchers typically encounter, nine samples ofN = 113 pairedX1, X2 observations

Russell, Dean / BOOTSTRAPPING MODERATED REGRESSION 175

Table 1b
Moderated Regression Results for Log10(Y1) = .75X1X2 + .25e,

Log10(Y2) = .5X1X2 + .5e, and Log10(Y3) = .25X1X2 + .75e

Median (R R Rmultiplicative additive
2 2 2− = ∆ )

X1 and X2 Distribution e Distribution
Characteristic Characteristic Rmultiplicative

2 Radditive
2 DR2

Normal Chi-square: df = 9a

Log10Y1 .876 .873 .006c

Log10Y2 .749 .743 .007
Log10Y3 .343 .334 .005

Uniform random number Chi-square: df = 9a

Log10Y1 .948 .944 .008
Log10Y2 .724 .714 .010
Log10Y3 .440 .431 .008

Chi-square: df = 3 Normal: e = 9, SD = 5b

Log10Y1 .874 .856 .032
Log10Y2 .748 .720 .041
Log10Y3 .501 .475 .025

Uniform random number
between 1 and 20

Log10Y1 .862 .843 .032
Log10Y2 .716 .688 .040
Log10Y3 .498 .473 .025

Chi-square: df = 9a

Log10Y1 .829 .808 .035
Log10Y2 .805 .772 .051
Log10Y3 .618 .585 .039

a. The expected value of the chi-square distribution is equal to its df. Hence, with df = 9, the ex-
pected midpoint of the error distribution is equal to the mean of the X1X2 product term.
b. M and SD for all normally distributed error terms were set to be equal to the M and SD for the
product X1X2.
c. The F statistic for the 2.5 percentile value of ∆R2 was greater than 1.
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were created at random from normal, uniform, and chi-square population distributions
using the SYSTAT9 computer package. WhenX1 andX2 observations were drawn at
random from a normal population distribution,µ andσ were set atµ = 3 andσ = 1. As
in the Monte Carlo simulation and consistent with measurement circumstances com-
monly encountered in applied psychological and management research,X1 andX2 data
sets were rounded to the nearest integer, yielding values from 1 to 5. UniformX1 andX2

data sets were drawn from a population containing integer values between 1 and 5,
inclusive, yieldingX1 = 3.012,σx1 = 1.438, andX2 = 2.889,σx2 = 1.394, respectively.
Finally,X1 andX2 data sets were drawn from chi-square distributions with 3 degrees of
freedom, yieldingX1 = 2.986,σx1 = 2.344, andX2 = 3.008,σx2 = 2.660, respectively.
Three dependent variables were generated within each sample using Equations 2, 3,
and 4 described in the Monte Carlo simulation above. Error terms (e) were drawn from
the same populations as described in the Monte Carlo simulation above, with their
means and standard deviations set equal to theX1X2 product term means and standard
deviations.

Analyses

Tests of interaction effects using moderated regression analysis were performed
using dependent variablesY1, Y2, Y3, LogY1, LogY2, and LogY3 in each of the nine sam-
ples. In addition,B = 1,000 bootstrap estimates of∆R2 were derived for all dependent
variables in each of the nine samples using the percentile bootstrap method described
above.9

Results

Table 2a reports results of moderated regression analyses performed on the nine
samples ofN = 113 containing different combinations ofX1, X2, ande distributions
(i.e., normal, uniform, and chi-square distributions ofX1 andX2 paired with normal,
uniform, and chi-squaree distributions). AlthoughF statistics are reported for mod-
eration effects in all nine combinations, only the three derived for normally distributed
prediction error meet parametric assumptions and are interpretable (i.e., statistics
reported in bold in Table 2a). Moderator effect sizes are captured by the∆R2 column
(theF statistic testsH0: ∆R2 = 0) (Bobko, 1995; Darlington, 1968).

∆R2 for Y1 in the three interpretable equations in Table 2a are .049, .068, and .216 for
X1 and X2 distributions drawn from normal, uniform, and chi-square populations,
respectively. This profile of effect sizes is again consistent with the observation that
normalX1 andX2 will have the fewest extremeX1X2 observations due to low probabili-
ties in the extreme tails of the normal distribution and results reported in the Monte
Carlo study reported above.

Figure 1 demonstrates whenX1, X2, or ewere highly positively skewed, as they are
when drawn fromχ df =3

2 populations,Y exhibited some positive skewness. Investiga-
tors following convention would perform a log transform onY hoping to permit the
probabilistic inferences that are possible when parametric assumptions are met. Table
2b reports moderated regression results whenYwas subjected to a log10transformation
for the five X1, X2, ande combinations with skewed chi-square distributions (i.e.,
skewedY distributions appear only whenX1, X2, or e distributions were positively
skewed). Consistent with the Monte Carlo findings reported above, moderated regres-
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sion effect sizes for the original nontransformed data were two to seven times larger
than effect sizes observed for log-transformed data. Effect sizes for the one data set
that met parametric assumptions (X1 andX2 distributed as chi-square,edistributed nor-
mally) went from∆R2 = .216 to∆R2 = .030 whenYwas subjected to log transformation.
Hence, moderated regression effect size was 7.2 times larger when it was (correctly)
estimated from nontransformed data.

However, CIs around∆R2 can be derived via bootstrapping procedures regardless
of howX1, X2, e, or Yare distributed. Table 3 reports bootstrap estimates of the 2.5 per-
centile values of the moderated regression effect size∆R2 taken fromB = 1,000 boot-
strap samples of sizeN = 113 for the five situations in whichY is positively skewed,
that is, those that are subject to log transformation using the current methodological
convention. Interestingly, median effect sizes across 1,000 bootstrap samples were
between 2.6 and 534 times larger than∆R2 effect sizes resulting from analyses con-
ducted afterY was log transformed (see Table 2b). This suggests that to be equally
likely to be detected, moderator effect sizes whenY is skewed and log transformed
must be 2.6 to 534 times as large as those observed under conditions whenY is not log
transformed and∆R2 is estimated from the median bootstrap∆R2 value. Alternatively,
other things being equal, the sample size needed to correctly rejectH0: ∆R2 = 0 would
need to be 6.76 to 285,156 times as large whenY is skewed and log transformed in
these samples. Investigators using OLS moderated regression and log-transformed
dependent variables would be much more likely to fail to detect true interaction effects
(Type-II error).

Discussion

This study demonstrated a fundamental problem in the detection of latent modera-
tion effects when log transforms are used to correct positively skewed dependent vari-
ables. Specifically, the increased probability of Type-II error was demonstrated in a
Monte Carlo simulation generating 5,000 samples from known population distribu-
tions and in a subsequent bootstrap analysis of individual simulated samples. Results
suggested severe decrements in the statistical power required to test moderation
regression effects (i.e.,H0: ∆R2 = 0) that result from log transformations. These decre-
ments occurred when parametric assumptions were in fact met (i.e., the data reported
in bold in Tables 1a and 2a) and when parametric assumptions were not met. Graphi-
cally, log transformations change theY distribution shape, effectively decreasingY
variance by reducing the degree to which extremely positiveYvalues deviate from the
mean. If these extremeYvalues were created by an interaction between one or more
positively skewed independent variables (e.g., whenX1 andX2 are distributed as chi-
square), log transformations ofY effectively disguise theextremevalues ofY that
should result from the product of extremeX1 andX2 values asless extremevalues,
effectively yielding a logYvariable that exhibits less variance than the original rawY
observations. Although Type-I error is always possible (cf. Aguinis & Pierce, 1998), it
is clear that log transformations of positively skewed dependent variables greatly
enhance the probability of Type-II error.
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Table 2a
Moderated Regression Analyses for Different X and e Distributions: N = 113 (Y1 = .75X1X2 + .25e, Y2 = .5X1X2 + .5e, and Y3 = .25X1X2 + .75e)

X1 and X2 Distribution Characteristic e Distribution Characteristic Rmultiplicative
2 Radditive

2 DR2 F1, 109 p Value

Normal: µ = 3, σ = 1, rounded to nearest integer Normal: e = 8.789, SD = 4.996a

Y1 .799 .750 .049 5.616 < .01
Y2 .587 .561 .026 2.910 > .05
Y3 .331 .322 .009 0.990 > .05

Uniform random number between 1 and 20
Y1 .880 .821 .059 6.834 < .01
Y2 .601 .580 .021 2.357 > .05
Y3 .291 .282 .009 0.990 > .05

Chi-square: df = 9b

Y1 .932 .887 .045 5.136 < .05
Y2 .599 .567 .032 3.603 > .05
Y3 .333 .329 .004 0.438 > .05

Uniform random number: distribution from 1 to 5, Normal: e = 8.702, SD = 6.029a

rounded to nearest integer Y1 .825 .757 .068 7.953 < .01
Y2 .633 .590 .043 4.898 < .05
Y3 .436 .425 .011 1.110 > .05

Uniform random number between 1 and 20
Y1 .831 .787 .044 4.561 < .05
Y2 .599 .580 .019 2.111 > .05
Y3 .395 .383 .012 1.324 > .05

Chi-square: df = 9b

Y1 .813 .792 .071 9.269 < .01
Y2 .701 .651 .050 5.737 < .05
Y3 .521 .479 .042 4.779 < .05
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Chi-square: df = 3, rounded to nearest integer Normal: e = 8.982, SD = 6.163a

Y1 .846 .630 .216 30.030 < .001
Y2 .620 .460 .160 12.976 < .001
Y3 .461 .355 .106 12.924 < .001

Uniform random number between 1 and 20
Y1 .906 .688 .214 29.677 < .01
Y2 .782 .642 .140 17.744 < .01
Y3 .506 .446 .060 6.957 < .01

Chi-square: df = 9b

Y1 .949 .799 .150 19.235 < .01
Y2 .682 .581 .101 12.246 < .01
Y3 .466 .426 .040 4.542 < .05

Note.Only statistics appearing in bold are interpretable under parametric assumptions and F statistics test H0:∆R2 = 0.N = 113 is the average N across k = 330 effect sizes re-
ported in a meta-analysis of Guzzo, Jette, and Katzell (1985).
a. M and SD for all normally distributed error terms were set to be equal to the M and SD for the product X1X2.
b.The expected value of the chi-square distribution is equal to its df.Hence, with df = 9, the expected midpoint of the error distribution is equal to the mean of the X1X2 product
term.
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Figure 1: Frequency Distribution for X1X2 and Y (X1 and X2 are chi-square distributed and Y = .75X1X2 + .25e)
Note. The variable e is drawn from random normal or random uniform distributions with e and σe set equal to X1X2 and σX1X2, respectively.
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Table 2b
Moderated Regression Results for Log10(Y1) = .75X1X2 + .25e, Log10(Y2) = .5X1X2 + .5e, and Log10(Y3) = .25X1X2 + .75e

X1 and X2 Distribution Characteristic e Distribution Characteristic Rmultiplicative
2 Radditive

2 DR2 F1, 109 p Value

Normal Chi-square: df = 9a

Log10Y1 .757 .736 .021 2.338 > .05
Log10Y2 .511 .500 .011 1.100 > .05
Log10Y3 .409 .402 .007 0.768 > .05

Uniform random number Chi-square: df = 9a

Log10Y1 .880 .877 .003 0.328 > .05
Log10Y2 .567 .566 .001 0.109 > .05
Log10Y3 .399 .399 .000 0.087 > .05

Chi-square: df = 3 Normal: e = 8.808, SD = 6.029b

Log10Y1 .553 .523 .030 3.371 > .05
Log10Y2 .399 .385 .014 1.548 > .05
Log10Y3 .278 .269 .009 0.990 > .05

Uniform random number between 1 and 20
Log10Y1 .611 .550 .061 7.081 < .05
Log10Y2 .456 .425 .031 3.487 > .05
Log10Y3 .342 .331 .011 1.100 > .05

Chi-square: df = 9a

Log10Y1 .678 .588 .090 10.780 < .01
Log10Y2 .444 .399 .045 5.136 < .05
Log10Y3 .367 .348 .019 2.111 > .05

a.The expected value of the chi-square distribution is equal to its df.Hence, with df = 9, the expected midpoint of the error distribution is equal to the mean of the X1X2 product
term.
b. M and SD for all normally distributed error terms were set to be equal to the M and SD for the product X1X2.
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Fortunately, results also indicated that bootstrapping procedures provide a viable
alternative to traditional, parametric statistical procedures for detecting moderator
effects regardless of howX1, X2, ande are distributed. In fact, in situations in which
convention dictates thatYshould be subjected to log transformation, log transforma-
tions caused extremely severe decrements in statistical power for parametric OLS pro-
cedures relative to bootstrap procedures. Data simulated here are commonly found in
compensation research, where parametric procedures are commonly used afterYhas
been subjected to a routine log transformation (e.g., Henderson & Frederickson, 1996;
Sanders & Carpenter, 1998).

Of course, log transformations could be justified on some theoretical basis. The
authors are unaware of any theoretical rationale put forth by compensation theory or
any other area of applied psychological or management research to justify such a trans-
formation in the presence of a multiplicative model. Furthermore, the authors have
never seen any discussion of the theoretical underpinnings of latent models that result
from such a transformation, such as$ logY X= +10 0 1 10β β (SPSS, 1996). As a result, any
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Table 3
Bootstrap 95% Confidence Intervals of Moderated Regression Analyses:

B = 1,000, N = 113, and Simulation Data Derived From
Y1 = .75X1X2 + .25e, Y2 = .5X1X2 + .5e, and Y3 = .25X1X2 + .75e

X1 and X2 Distribution e Distribution
Characteristic Characteristic Rmultiplicative

2 Radditive
2 DR2

Normal Chi-square: df = 9a

Y1 .833 .663 .170c

Y2 .602 .482 .120c

Y3 .433 .343 .090
Uniform random number Chi-square: df = 9a

Y1 .917 .700 .217c

Y2 .689 .529 .160c

Y3 .450 .340 .110c

Chi-square: df = 3 Normal: e = 8.808,
SD = 6.029b

Y1 .817 .607 .210c

Y2 .555 .422 .133c

Y3 .311 .178 .133c

Uniform random
number between 1 and 20

Y1 .862 .666 .196c

Y2 .499 .349 .150c

Y3 .311 .201 .111c

Chi-square: df = 9a

Y1 .890 .656 .234c

Y2 .609 .448 .161c

Y3 .522 .402 .120c

Note. N = 113 is the average N across k = 330 effect sizes reported in a meta-analysis of Guzzo,
Jette, and Katzell (1985).
a. The expected value of the chi-square distribution is equal to its df. Hence, with df = 9, the ex-
pected midpoint of the error distribution is equal to the mean of the X1X2 product term.
b. M and SD for all normally distributed error terms were set to be equal to the M and SD for the
product X1X2.
c. The F statistic for the 2.5 percentile value of ∆R2 was greater than 1.

 at UNIV OF WISCONSIN OSHKOSH on June 9, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


gains in statistical elegance and predictive power (i.e., for additive models) stemming
from log transformations are not currently matched by gains in theoretical insight.
Null results for tests of moderation in studies employing log transformations are
expected to frequently reflect Type-II errors when a true latent moderation process is
present.

In sum, when hypothesized models involve interaction effects, applied psychologi-
cal and management research would benefit from a routine application of the bootstrap
procedures. Although they do not replace common parametric procedures, bootstrap
applications are appropriate when parametric assumptions are not viable (e.g., when
heteroskedasticity is present due to a positively skewed dependent variable). Nonlin-
ear monotonic transformations may achieve necessary statistical conditions for para-
metric inferences in OLS applications to additive models (Busemeyer & Jones, 1983;
Winer, 1974). The results indicated that nonlinear monotonic transformations erode
investigators’ capacity to assess theory-based predictions of moderation effects (e.g.,
estimates of moderation effect∆R2). Importantly, bootstrapping provides an alterna-
tive method of assessing theory-based inferences of moderation effects from data that
cannot be assessed with comparable statistical power by conventional procedures.

Notes

1. Note that ifX is not normally distributed andY is a linear function ofX,Ywill also likely
not be normally distributed.

2. Bergman, Scarpello, and Hills (1998) and Milkovich and Newman (1996) noted how pay
ranges are generally a constant or increasing percentage of the range midpoint. Hence, as the pay
range midpoint (and mean) increases, the variation in observed salaries around the midpoint in-
creases.

3. Of course, weighted least square (WLS) procedures would also resolve the heteroskedas-
ticity problem. However, it would do so by migrating what was a nonlinear transformation
paired with ordinary least squares into the internal optimal weighting procedures that are char-
acteristic of WLS.

4. We thank an anonymous reviewer for bringing this to our attention.
5. We thank an anonymous reviewer for this example.
6. See Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for a discussion of alternatives

to the simple bootstrap. Specifically, the bias-corrected and accelerated (BCa) and the approxi-
mate bootstrap confidence (ABC) interval methods are marginally more complex techniques
that overcome most shortcomings associated with the simple bootstrap.

7. The first author will provide these results on request.
8. ∆R2 for the 2.5 and 97.5 percentile values are available from the first author on request.
9. See Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for more elaborate bootstrap pro-

cedures exhibiting certain statistical elegance that might yield more robust confidence intervals.
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