ARTICLE IN PRESS

Tetrahedron Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Total syntheses of (±)-cis- and (±)-trans-neocnidilides

Surendra H. Mahadevegowda^b, Faiz Ahmed Khan^{a,*}

^a Department of Chemistry, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, India
^b Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

ARTICLE INFO

Article history: Received 14 May 2014 Revised 3 June 2014 Accepted 3 June 2014 Available online xxxx

Keywords: Antimicrobial Phthalides Total synthesis Grob-type fragmentation Bis-oxidative cleavage

Phthalides are the components of taxonomic groups of the plant family Apiaceae.¹ The stereo isomers *cis*- and *trans*-neocnidilides (1 and 2) are the tetrahydro derivatives of phthalides. The compounds 1 and 2 are present in Apium graveolens L. including their structural analogues. Isolation and structure confirmation of 2 were reported by Mitauhashi et al. in 1964.² Later, Fischer et al.³ have isolated and reported cis-neocnidilide (1) from A. graveolens L., and spectroscopic data comparison with previously isolated phthalides showed that the structure is similar to previously reported isocnidilide. Some naturally occurring 3-butyltetrahydrophthalides are represented in Figure 1. Literature survey for biological features of these natural products revealed that the compound 2 inhibits the growth and toxin production of mycotoxin-producing fungi.⁴ As additional factors for biological activity profile of 2, (-)-transneocnidilide and its racemic mixture showed inhibiting activity against microorganisms Aspergillus niger, Cochliobolus miyabeanus, and Pyricularia oryzae at the range of 50 µg/disk to 300 µg/disk concentration.⁴ In continuation of hunt for new bioactive compounds in natural resources, Nair and co-worker^{5a} isolated **2** from *A. graveolens* along with two other hydroxyl tetrahydrophthalides, and biological assay for 2 displayed noteworthy mosquitocidal, nematicidal, and antifungal activities compared to other two additionally isolated phthalides, which are having conjugation to lactone carbonyl at the ring junction. Moreover, during last decade, Miyazawa and co-workers^{5b} have isolated *trans*-neocnidilide (2)from Cynoglossum officinale including three other butyl phthalides.

http://dx.doi.org/10.1016/j.tetlet.2014.06.007 0040-4039/© 2014 Elsevier Ltd. All rights reserved.

ABSTRACT

Total syntheses of two antimicrobial natural products (\pm) -*cis*-neocnidilide and (\pm) -*trans*-neocnidilide starting from a readily preparable cyclohexa[*b*]-fused 5-oxabicyclo[2.1.1]hexane derivative are presented. The diastereomeric tetrahydrofuran tricarboxylate epimers obtained from a BF₃·OEt₂ promoted Grob-type fragmentation of the oxa-bicycle derivative were converted into title natural products by employing pyridinium dichromate/acetic anhydride mediated bis-oxidative cleavage reaction.

© 2014 Elsevier Ltd. All rights reserved.

Figure 1. Some naturally occurring 3-butyltetrahydrophthalides.

The larvicidal activity test for **2** against *Drosophila melanogaster* shows LC_{50} value 9.90 µmol/mL, and structure–activity relationship confirms that the presence of conjugation with lactone carbonyl moiety plays a crucial role for larvicidal activity. Also, the acute adulticidal activity test report for **2** shows 97% mortality at a concentration of 50.0 µg/adult with LD_{50} value 10.82 µg/adult. Notably, the difficulty in isolation of pure **1** is the demerit for evaluating more biological activity for *cis*-neocnidilide.³

The literature survey revealed that very few synthetic routes have been reported for the synthesis of structurally simple 3-buty-ltetrahydrophthalides **1** and **2**.⁶ In the synthesis of (-)-*cis*-neocnidilide reported by Tanaka et al.,⁷ it has been demonstrated that, the

^{*} Corresponding author. Tel.: +91 40 23016084. *E-mail address: faiz@iith.ac.in* (F.A. Khan).

ARTICLE IN PRESS

severe steric hindrance between the butyl chain and the olefinic proton in the most preferable exo transition state of intra molecular Diels-Alder reaction of triene ester would diminish the formation of **3–3a** cis adduct. Eventually, the variance in position of butyl chain of triene ester afforded 1:1.4 ratio of 3-3a cis and 3-3a trans adduct, and then minor isomer was utilized to accomplish the synthesis of 1 via reduction of non-conjugated double bond and recreation of conjugated unsaturation to lactone. Moreover, McClure strategy⁸ for the total synthesis of both 1 and 2 from dihydrofuran involves utilization of phosphonates, which are obtained via their previously reported condensation reaction involving pentacovalent oxaphosphoranes and carbonyl compounds. However, this synthesis requires construction of cyclohexene fused lactone system and late stage Barton deoxygenation was employed to complete the total synthesis of 1 and 2. Therefore, we sought an alternative strategy for the synthesis of both natural products.

Grob-fragmentations⁹ and ring cleavage reactions are generally efficient, these have been utilized as key reactions in numerous natural products' synthesis and construction of organic frame works.^{10,11} Recently, we have reported¹² a BF₃·OEt₂-mediated Grob-type fragmentation reaction of compound **7**. It provides tetrahydrofuran tricarboxylates **8a,b** (ratio **8a:8b** = 3:1) in near quantitative yield. The cyclohexa[*b*]-fused 5-oxabicyclo[2.1.1]hexane **7** could be prepared in gram-scale quantities from commercial available 1,2,3,4-tetrachloro-5,5-dimethoxycyclopenta-1,3-diene and cyclohexene (three steps, overall yield 80%).^{13,14} The ready availability of **7** inspired us to utilize it for the synthesis of **1** and **2** employing Grob-type fragmentation¹² and bis-oxidative cleavage reactions as key steps as represented in Scheme 1.^{15–17}

Octahydroisobenzofuran methanols 10a and 10b were prepared starting from chromatographically well separable THF derivatives 8a and 8b, respectively. The transformation of 8a-10a is depicted in Scheme 3, it involves conversion of THF tricarboxylate 8a to corresponding triol **9a** by reduction with LiAlH₄ in refluxing THF (74% yield). When the compound 9a was subjected for acetonide protection, it afforded the required THF alcohol **10a** along with a less polar mixed acetal (confirmed by ¹H NMR).¹⁶ which was selectively deprotected by treatment with pyridinium *p*-toluenesulfonate in MeOH at 0 °C for 50 min to afford alcohol 10a with an overall yield of 90% (from two steps). At this stage, we turned our attention to demonstrate the feasibility of our proposed pathway for the synthesis of **1** and **2** via bis-oxidative cleavage reaction. The alcohol 10a was protected as TBDPS ether and subsequent acetonide deprotection with PPTS (10 mol %) in MeOH at 50 °C afforded dimethanol THF 11a with 84% yield (from two steps) as depicted in Scheme 3. The similar experimental procedures were adopted for preparation of **11b** from **8b** as detailed in Scheme 4. Then, exposure of THFs **11a** and **11b** to bis-oxidative cleavage with PDC/Ac₂O gave lactones 11c and 11d, respectively, in moderate yields (54%) as represented in Scheme 2.

After demonstrating the bis-oxidative cleavage reaction for THF alcohols **11a** and **11b**, we committed to achieve the synthesis of **1** and **2**, then our attention was drawn to convert the free hydroxymethyl group of **10a** to ^{*n*}butyl chain. Initially, our effort for direct conversion¹⁸ of alcohol **10a** to alkyl chain by converting it into triflate and treatment with ^{*n*}propyl magnesium bromide failed to

Scheme 2. Demonstration of bis-oxidative cleavage for THF diols 11a and 11b.

afford the required product. To overcome this difficulty, we converted alcohol **10a** to corresponding aldehyde by Parikh–Doering oxidation employing Hünig's base (ⁱPr₂NEt)¹⁹ which afforded aldehyde **12a** in 81% yield without any epimerization despite being sterically congested. Then, aldehyde **12a** was subjected to Wittig olefination using triphenyl(propyl)phosphonium bromide and *n*-BuLi to obtain olefin **13a** (Z/E = 100:0) in 74% yield.²⁰ Further, the hydrogenation of olefin **13a** using H₂, Pd-C gave complex mixture due to double bond isomerization.²¹ Afterward, exposure of **13a** to hydrogenation using Adam's catalyst (PtO₂)²² delivered compound **14a** in 90% yield, with little amount of olefin isomerized product (confirmed by ¹H NMR). The acetonide deprotection of **14a** with 10% HCl in MeOH afforded **15a** in 99% yield which upon bis-oxidative cleavage delivered **16a** in 62% yield (Scheme 3).

On the other hand, having sufficient amount of minor octahydroisobenzofuran derivative **8b**, we proceeded to synthesize lactone **16b** similar to **16a** as depicted in Scheme 4. In this part, the triol **9b** was obtained in 80% yield (40 h) followed by mono alcohol **10b** after acetonide protection. Then, alcohol **10b** was oxidized to corresponding aldehyde **12b** with 80% yield under similar oxidation condition as **12a**. Further, when Wittig olefination was carried out for the compound **12b**, Z/E mixture of olefin **13b** resulted in 94:06 ratio with 72% yield. Then, on treatment of *Z* and *E* mixture of alkene **13b** with H₂/cat. PtO₂, no isomerized product was observed and delivered the compound **14b** in 94% yield. The diol **15b** obtained after removal of the acetonide group of **14b** was subjected to bis-oxidative cleavage with PDC/Ac₂O to afford lactone **16b** in 64% yield.

After successfully synthesizing lactones 16a and 16b, we focused our attention for creating the conjugated unsaturation in a regioselective manner via α -bromination and elimination sequence. From the literature,²³ we believe that bromination of lactone could be accomplished directly in the presence of LDA without converting lactone into acid sensitive silyl ketene.⁷ Then, the exposure of compounds 16a and 16b to molecular bromine in the presence of LDA in THF at -78 °C yielded diastereomerically pure α -bromo lactones **17a** and **17b**, respectively, in moderate yields along with substantial recovery of starting materials as depicted in Scheme 5. When we subjected compound 17a for dehydrobromination with DBU in refluxing toluene, incomplete consumption of starting material was observed. Then treatment of 17a with DBU (3.0 equiv) in xylene at 140 °C afforded (±)-cisneocnidilide (1) and $18a^{24}$ in ratio 9:1. Due to isomerization of conjugated double bond of 1, trace amount of (±)-cnidilide 3 (confirmed by ¹H NMR and IR spectra) was also observed. On the other hand, elimination of 17b with DBU (2.0 equiv) in toluene yielded (±)-*trans*-neocnidilide (**2**) and **18a** with 72% yield (**2**:**18a** = 17:03). Both ¹H and ¹³C NMR data of synthesized natural products **1** and 2 are having close agreement with literature reported data (for detail see S57 and S58 in Supporting information).²⁵

In an effort to enhance the overall yields, we turned our attention to synthesize α -hydroxy lactones **19a** and **19b**. Our results on the synthesis of **1** and **2** via α -hydroxylation and elimination route from lactones **16a** and **16b** are depicted in Scheme 5. The treatment of **16a** and **16b** with molecular oxygen using LDA/HMPA in

Please cite this article in press as: Mahadevegowda, S. H.; Khan, F. A. Tetrahedron Lett. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.06.007

S. H. Mahadevegowda, F. A. Khan/Tetrahedron Letters xxx (2014) xxx-xxx

Scheme 3. Synthesis of lactone 16a from 8a.

Scheme 5. Completion of total synthesis of (±)-cis-neocnidilide (1) and (±)-trans-neocnidilide (2) from 16a and 16b, respectively.

THF afforded **19a** and **19b** in 72% and 70% yields, respectively.²⁶ Further, alcohol **19a** was converted into methanesulfonate, and the mesylate was subjected to elimination with DBU in refluxing

toluene to afford **1** and **18a** in 2:1 ratio in 38% yield (over two steps). In view of the fact that, elimination of mesylate derivative of alcohol **19a** gave moderate regioselectivity and lower yield, we

Please cite this article in press as: Mahadevegowda, S. H.; Khan, F. A. Tetrahedron Lett. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.06.007

further attempted dehydration of alcohol 19b, intended to enhance the selectivity in formation of unsaturation. Compound **19b** was treated with SOCl₂ and pyridine in CH₂Cl₂ and the resulting product was then reacted with DBU (2.0 equiv) in refluxing toluene (2 h). This afforded 18a with complete reversal in regioselectivity (2:18a = 0:1).

In conclusion, we have accomplished the total synthesis of (±)cis-neocnidilide and (±)-trans-neocnidilide from an oxa-bridged compound 7 using C-C sigma bond cleavage reactions. The chromatographically well separable THFs 8a and 8b were utilized independently for the synthesis of 1 and 2. The synthesis has been achieved with key reactions involving transformation of aldehyde to alkyl chain using Wittig olefination followed by hydrogenation and pyridinium dichromate/acetic anhydride mediated bis-oxidative cleavage. Additionally, regioselective creation of conjugated double bond was demonstrated both via α -bromo and α -hydroxy lactones.

Acknowledgments

F.A.K. gratefully acknowledges CSIR for financial support. S.H.M. thanks CSIR, India for research fellowship.

Supplementary data

Supplementary data (experimental procedures, spectroscopic data, copies of ¹H, ¹³C spectra for all reported compounds and DEPT 135, APT spectra for selected compounds) associated with this article can be found, in the online version, at http://dx.doi.org/ 10.1016/j.tetlet.2014.06.007.

References and notes

- 1. For review on phthalides see: Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891.
- Mitauhashi, H.; Muramatau, T. Tetrahedron 1964, 20, 1971.
- 3. Fischer, F. C.; Gijbels, J. M. Planta Med. 1987, 53, 77.
- Suzuki, H.; Tanaka, A.; Yamashita, K. Agric. Biol. Chem. 1987, 51, 3369. 4.
- (a) Momin, R. A.; Nair, M. G. J. Agric. Food Chem. 2001, 49, 142; (b) Tsukamoto, 5. (a) Cocker, W.; Sainsbury, D. M. Chem. Commun. 1965, 479; (b) Cocker, W.;
- 6. McMurry, T. B. H.; Sainsbury, D. M. J. Chem. Soc. 1966, 1152; (c) Beak, P.; Kempf, D. J.; Wilson, K. D. J. Am. Chem. Soc. 1985, 107, 4745; (d) Jiao, X.-Z.; Xie, P.; Zu, L.-S.; Liang, X.-T. J. Asian Nat. Prod. Res. 2003, 5, 165; (e) Oguro, D.; Watanabe, H. *Tetrahedron* **2011**, 67, 777.
- Tanaka, A.; Suzuki, H.; Yamashita, K. Agric. Biol. Chem. 1989, 53, 2253. 7.
- McClure, C. K.; Jung, K.-Y. J. Org. Chem. 1991, 56, 2326.
 (a) Grob, C. A.; Schiess, P. W. Angew. Chem., Int. Ed. Engl. 1967, 6, 1; (b) Prantz, K.; Mulzer, J. Chem. Rev. 2010, 110, 3741.
- For selected references of Grob-fragmentation reactions have been utilized for 10. the total synthesis of natural products and construction of organic frame works see: (a) Dong, J.-Q.; Wong, H. N. C. Angew. Chem., Int. Ed. 2009, 48, 2351; (b)

Paquette, L. A.; Yang, J.; Long, Y. O. J. Am. Chem. Soc. 2002, 124, 6542; (c) Thornton, P. D.; Burnell, D. J. Org. Lett. 2006, 8, 3195; (d) Xu, C.; Liu, Z.; Wang, H.; Zhang, B.; Xiang, Z.; Hao, X.; Wang, D. Z. Org. Lett. 2011, 13, 1812.

- 11. For ring cleavage and their applications for synthesis of natural products and organic frame works see: (a) Lange, G. L.; Merica, A.; Chimanikire, M. Tetrahedron Lett. **1997**, 38, 6371; (b) Deak, H. L.; Stokes, S. S.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 5152; (c) Hansson, T.; Wickberg, B. J. Org. Chem. 1992, 57, 5370; (d) White, J. D.; Li, Y.; Kim, J.; Terinek, M. Org. Lett. 2013, 15, 882; (e) Rao, G. H. M.; Khan, F. A. J. Org. Chem. 2013, 78, 11092.
- 12. For our recent report of Grob-type fragmentation of oxa-bridged derivatives and for the preparation of 8a and 8b (3:1) from 7 see: Mahadevegowda, S. H.; Khan, F. A. Tetrahedron 2013, 69, 8494.
- 13. The detail for preparation of compound 7 can be found in: (a) Khan, F. A.; Dash, J.; Sudheer, Ch.; Sahu, N.; Parasuraman, K. J. Org. Chem. 2005, 70, 7565. and references therein; (b) The commercially available reagents 1,2,3,4tetrachloro-5,5-dimethoxycyclopenta-1,3-diene (5.0 g) and cyclohexene (2.5 mL) are converted into oxa-bridged derivative 7 (4.76 g) in three steps with overall yield of 80%.
- 14. For our previous applications of oxa-bridged compound 7 see: (a) Khan, F. A.; Parasuraman, K. Chem. Commun. 2009, 2399; (b) Khan, F. A.; Parasuraman, K.; Donnio, B. Tetrahedron 2010, 66, 8745.
- Tojo, G.; Fernández, M. Oxidation of Alcohols to Aldehydes and Ketones: A 15. Guide to Current Common Practice. In Basic Reactions in Organic Synthesis; Tojo, G., Ed.; Springer: New York, 2006; pp 1–95. Chapter 1.
- 16. Mahadevegowda, S. H.; Khan, F. A. Tetrahedron Lett. 2014, 55, 2266.
- Cr(VI) mediated oxidative cleavage reaction of β-hydroxy ethers to lactones have been used in the synthesis of some natural products see: (a) Taber, D. F.; Song, Y. J. Org. Chem. 1997, 62, 6603; (b) Huang, H.; Panek, J. S. Org. Lett. 2003, 5, 1991; (c) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2006, 47 4995; (d) Reddy, M. S.; Narender, M.; Rao, K. R. Tetrahedron 2007, 63, 11011; (e) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 2133.
- 18. (a) Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1989, 30, 1281; (b) Yang, C.; Bao, Y.-H.; Liang, P.; Ye, J.-L.; Wang, A.-E.; Huang, P.-Q. Tetrahedron 2011, 67, 6281.
- 19. Mertz, E.; Tinsley, J. M.; Roush, W. R. J. Org. Chem. 2005, 70, 8035.
- (a) Du, Y.; Liu, J.; Linhardt, R. J. J. Org. Chem. 2006, 71, 1251; (b) Ringstrand, B.; 20. Oltmanns, M.; Batt, J. A.; Jankowiak, A.; Denicola, R. P.; Kaszynski, P. Beilstein J. Org. Chem. 2011, 7, 386.
- 21. Hon, Y.-S.; Chen, H.-F.; Kao, C.-Y.; Luo, C.-Z. Tetrahedron 2010, 66, 8468.
- 22. Wasserman, H. H.; Rusiecki, V. Tetrahedron Lett. 1988, 29, 4977.
- 23. Guo, Y.; Fan, L.; Wang, J.; Yang, C.; Qu, H.; Xu, H. Tetrahedron 2013, 69, 774.
- 24. Miura, M.; Okuro, K.; Hattori, A.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1989, 73
- 25. (±)-*cis*-Neocnidilide (1): $R_f = 0.3$ (5% EtOAc in hexane, silica gel TLC), colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 6.84 (q, 1H, *J* = 3.3 Hz), 4.65 (td, 1H, *J* = 8.9, 3.2 Hz), 3.02-3.09 (m, 1H), 2.30-2.37 (m, 1H), 2.14-2.26 (m, 1H), 1.87-1.98 (m, 2H), 1.42–1.60 (m, 2H), 1.25–1.39 (m, 6H), 0.90 (t, 3H, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 136.2, 129.6, 81.8, 39.7, 31.5, 27.5, 25.1, 22.6, 22.5, 21.2, 13.9; IR v_{max} (neat): 2927, 2856, 1757, 1683, 1454, 1224, 1184, 1093, 1027 cm⁻¹; HRMS (ESI): m/z calcd for C₁₂H₁₈NaO₂ [M+Na]⁺ 217.1204, found 217.1191.

(±)-trans-Neocnidilide (2): $R_f = 0.3$ (5% EtOAc in hexane, silica gel TLC), colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 6.78 (q, 1H, J = 3.4 Hz), 3.97 (ddd, 1H, J = 8.8, 7.6, 5.1 Hz), 2.45-2.54 (m, 1H), 2.30-2.39 (m, 1H), 2.13-2.24 (m, 1H), 2.03–2.09 (m, 1H), 1.91–1.96 (m, 1H), 1.70–1.81 (m, 2H), 1.47–1.55 (m, 2H), 1.32–1.45 (m, 3H), 1.12–1.25 (m, H), 0.92 (t, 3H, J=7, H2); ¹³C NMR (100 MHz, CDCl₃): *δ* 170.2, 135.2, 131.1, 85.3, 43.1, 34.3, 27.5, 25.4, 25.0, 22.5, 20.7, 13.9; IR ν_{max} (neat): 2929, 2859, 1758, 1682, 1455, 1326, 1248, 1224, 1182, 1085 cm⁻¹. HRMS (ESI): *m/z* calcd for C₁₉H₁₈NaO₂ IM+Nal⁺ 217.1204. found 217,1192.

26. Khan, F. A.: Czerwonka, R.: Zimmer, R.: Reissig, H.-U. Svnlett 1997, 995.