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Oxidation of amines catalyzed by cyclohexanone monooxygenase
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Abstract—Cyclohexanone monooxygenase catalyzed the oxidation of tertiary, secondary and hydroxylamines to N-oxides,
hydroxylamines and nitrones respectively. © 2003 Elsevier Science Ltd. All rights reserved.

Oxidative biotransformations are amongst the most
useful of all identified biologically mediated conver-
sions. They usually involve monooxygenases or diooxy-
genases that catalyze the insertion of one or two oxygen
atoms at a specific point of a molecule, often with high
stereo and/or regioselectivity. These very attractive fea-
tures are now increasingly exploited in the synthesis of
many pharmaceuticals and other highly valuable inter-
mediates. In the repertoire of monooxygenases, cyclo-
hexanone monooxygenase from Acinetobacter
calcoaceticus NCIMB 9871 (CHMO) (EC 1.14.13.22)
has been studied most intensively. CHMO is a flavoen-
zyme of about 60,000 Da, active as a monomer which
contains one firmly but non-covalently bound FAD
unit per enzyme molecule.1 It has wide potential for
application in the manufacture of fine chemicals and in
organic synthesis based on the Baeyer–Villiger oxida-
tion, which transforms racemic ketones into enan-
tiomerically pure esters. The only reagents consumed
are dioxygen, NADPH and the substrate ketone.2

Mechanistic studies have shown that the reactive inter-
mediate is 4a-hydroperoxyflavin which can act as an
electrophile towards trimethyl phosphite and iodide
ions, and as a nucleophile towards boronic acids and
ketones.1 The CHMO can catalyze the asymmetric sul-
foxidation of numerous alkyl aryl sulfides,3 dialkyl
sulfides,4 1,3-dithioacetals5 and organic cyclic sulfites.6

This enzyme also oxygenates heteroatoms such as N, Se
and P.7 Tertiary amines are converted into N-oxides,
selenides into selenoxides and phosphines into phosphi-
noxides. Recently, the synthetic potential of this

enzyme has been extended by our group to the asym-
metric epoxidation of electron-poor olefins.8

Another important point is that there are two enzyme
systems contained in the mammalian liver, responsible
for the oxidation of N-substituted amine drugs, in a
NADPH and O2 dependent manner; similar to CHMO,
one of them is a flavoprotein.9

Finally the nitrones, which are among the expected
reaction products of amine oxidation, are useful inter-
mediates for the synthesis of various nitrogen-contain-
ing biologically active compounds such as antibiotics,
alkaloids, aminosugars and �-lactams.10 They are excel-
lent spin traps in physiological media and protect the
central nervous system against oxidative damage;11 for
instance �-phenyl-tert-butyl nitrone exhibits antioxi-
dant and neuroprotective activity.12

Scheme 1. CHMO catalyzed oxidation of N-methylbenzyl-
amine with in situ coenzyme regeneration.
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The enzyme used was as a partially purified preparation
obtained from an Escherichia coli strain in which the
gene of CHMO was cloned and overexpressed.13 The
amines (15 mM) were reacted, at 25°C, under stirring,
in 0.85 ml of 0.05 M Tris–HCl buffer, pH 8.6, contain-
ing NADP+ (0.5 mM), 5 units of CHMO, glucose-6-
phosphate (50 mM) and 18 units of glucose-6-
phosphate dehydrogenase (G6PDH) that served to
regenerate the cofactor (see Scheme 1). After 24 h, the
reaction mixtures were extracted with ethyl acetate (3×1
ml) and organic extracts were dried and analyzed. The
degree of conversion was determined by HPLC analysis
on a Chiralcel OD column using n-hexane–propan-2-ol
(9:1) as the mobile phase. The products of the reaction
were identified by comparison of their eluition order in
HPLC with the nitrones and the hydroxylamines pre-
pared according to literature.10,14 In the case of the
tertiary amine the product formed was the amine N-
oxide.7

We have chosen N-methylbenzylamine as model sub-
strate in order to understand the mechanism involved
in this biooxidation. The enzyme reacts with amine to
form first hydroxylamine and then, by further N-oxida-
tion, two regioisomeric nitrones in agreement with the
study on 4a-hydroperoxyflavin oxidation described by
Ball and Bruice.15 The two nitrones originate by N-oxi-
dation of the parent hydroxylamine (see in Scheme 2);
their ratio is in favor of the most stable one. The degree
of conversion and the Vmax/Km values indicate that the
catalytic efficiency of CHMO is similar for tertiary and
secondary amines (see Table 1). In contrast the oxida-
tion rate of N-methylaniline by 4a-hydroperoxyflavin
was two orders of magnitude lower than that of N,N-
dimethybenzylamine.15

The reaction is quite sensitive to steric effects; indeed
methyl-(1-phenyl-ethyl)-amine did not react, thus pre-
venting the possibility of the kinetic resolution of the

Scheme 2. Mechanism of oxidation of N-methylbenzylamine
by CHMO.

racemic starting material. Furthermore in the case of
iso-propyl derivative, replacement of the methyl group
with more sterically demanding substituents leads to
minor reactivity; the N-tert-butylbenzyl derivative did
not react. Not only steric but also electronic effects
influence the reaction rate; indeed N-methyl-p-
chlorobenzylamine and 4-(ethylamino-methyl)-pyridine
were recovered unchanged. Dialiphatic secondary
amines such as diisopropylamine and pipecoline were
not transformed by CHMO.

The N-oxidation of amines by CHMO resembles the
sulfur oxidation of organosulfur derivatives, since both
represent overall a nucleophilic displacement upon the
terminal oxygen of the 4a-hydroperoxyflavin.

Table 1. CHMO catalyzed oxidation of amines

Conversion (%)Amines Vmax/Km (min−1)aProducts

87.5N-Methylbenzylamine 10C6H5CH�N(O)CH3

8C6H5CH2N(O)�CH2

80C6H5CH2N(OH)CH3

C6H5CH�N(O)CH3N-Methylbenzylhydroxylamine 104.336
C6H5CH2N(O)�CH2 16
C6H5CH�N(O)CH2CH3N-Ethylbenzylamine 30 95.2
C6H5CH2N(O)�CHCH3 18

N-iso-Propylbenzylamine 13C6H5CH�N(O)CH(CH3)2 62.5
N-tert-Buthylbenzylamine N.R.
N-n-Buthylbenzylamine 14C6H5CH�N(O)(CH2)3CH3 58.8

2C6H5CH2N(O)�CH(CH2)2CH3

N.R.N-Methyl-p-chlorobenzylamine
N-Methylaniline 60C6H5N(OH)CH3 84.6

N.R.4-(Ethylaminomethyl)-pyridine
N.R.Methyl-(1-phenyl-ethyl)-amine

63C6H5N(O)(CH3)2 78.4N,N-Dimethylbenzylamine

N.R.: no reaction.
a The kinetic constants of CHMO for substrates were determined in 50 mM Tris–HCl buffer at pH 8.6, 25°C, in 1 ml cuvettes, 1 cm path length.

The reaction mixture contained CHMO (30 milliunits), 0.1 mM NADPH and 0.4–4 mM substrate. The consumption of NADPH was
spectrophotometrically monitored at 340 nm.
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In conclusion, we have shown that CHMO reacts with
tertiary, secondary and hydroxylamines. In spite of
their synthetic limits these biotransformations are very
interesting from a mechanistic point of view when
compared to the results obtained by 4a-hydroperoxy-
flavin or by hepatic flavoprotein microsomal oxidase.16
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