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ABSTRACT: A protocol of iridium catalyzed asymmetric hydro-
genation of 4-alkyl substituted 3-ethoxycarbonyl quinolin-2-ones
and coumarins has been reported, providing a wide range of chiral
dihydroquinolin-2-ones and dihydrocoumarins in high yields with
excellent enantioselectivities (up to 99% ee) and high turnover
numbers (up to 28 000). This efficient protocol was successfully
applied for the synthesis of MPR3160 and the key chiral
intermediate of R-106578.

Chiral dihydroquinolin-2-ones and dihydrocoumarins are
common structural motifs in natural products and

pharmaceuticals.1 Typical and significant examples of these
chiral heterocyclic molecules are those having alkyl or aryl
substituents at the C4-position2 (Figure 1). In addition, these

heterocyclic molecules are also important chiral building
blocks for the synthesis of pharmaceuticals and bioactive
natural products.3 As a consequence, the development of
efficient methods for the enantioselective syntheses of such
heterocyclic molecules has received much attention.4 Among
them, the asymmetric hydrogenation of coumarins catalyzed
by rhodium and ruthenium complexes of chiral diphosphine
ligands5 (Scheme 1a) and a biomimetic NAD(P)H analogue
(R)-FENAM in combination with achiral ruthenium catalyst6

(Scheme 1b) has been demonstrated to be one of the most
efficient ways of accomplishing the goal. However, the

substrates are limited to 4-aryl substituted coumarins and no
report has been published for the asymmetric hydrogenation of
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Figure 1. Selected pharmaceuticals and natural products containing
chiral dihydroquinolin-2-one and dihydrocoumarin structures.

Scheme 1. Asymmetric Hydrogenation of Quinolones and
Coumarins

Letterpubs.acs.org/OrgLett

© 2021 American Chemical Society
3593

https://doi.org/10.1021/acs.orglett.1c00993
Org. Lett. 2021, 23, 3593−3598

D
ow

nl
oa

de
d 

vi
a 

R
U

T
G

E
R

S 
U

N
IV

 o
n 

M
ay

 1
5,

 2
02

1 
at

 1
2:

57
:4

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qian-Kun+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiong+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fan+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pu-Cha+Yan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jian-Hua+Xie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qi-Lin+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.1c00993&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=&ref=pdf
https://pubs.acs.org/toc/orlef7/23/9?ref=pdf
https://pubs.acs.org/toc/orlef7/23/9?ref=pdf
https://pubs.acs.org/toc/orlef7/23/9?ref=pdf
https://pubs.acs.org/toc/orlef7/23/9?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c00993?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.orglett.1c00993?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf


quinolin-2-ones for the synthesis of chiral dihydroquinolin-2-
ones.7

We have recently found that chiral iridium complexes of
SpiroPAP ligands are extremely efficient catalysts for the
asymmetric hydrogenation of ketones8 and esters9 and were
also highly efficient for the asymmetric hydrogenation of
electron-deficient tetrasubstituted olefins.10 These interesting
results encouraged us to investigate the possibility of applying
chiral spiro iridium catalysts into the asymmetric hydro-
genation of quinolin-2-ones and coumarins. The results
showed that chiral spiro iridium catalysts (R)-1 could be
highly efficient for the hydrogenation of 4-substituted 3-
ethoxycarbonyl quinolin-2-ones and coumarins, providing the
corresponding chiral dihydroquinolin-2-ones and dihydrocou-
marins in high yields with excellent enantioselectivities
(Scheme 1c). Herein we report the results of asymmetric
hydrogenation of 4-substituted 3-ethoxycarbonyl quinolin-2-
ones and coumarins with Ir-SpiroPAP catalysts.
We initially selected 4-methyl 3-ethoxycarbonyl quinolin-2-

one 2a as a standard substrate to evaluate several catalysts in
the presence of tBuOK as base and toluene as a cosolvent11 in
EtOH under 50 atm of H2 at room temperature (Scheme 2).

We found that the hydrogenation could be completed within
24 h with (R)-1b as a catalyst, and the corresponding
hydrogenated product trans-3a was obtained in 95% yield with
99% ee in a ratio of 7:1. Comparable results were also achieved
with (R)-1a as a catalyst (90% yield and 93% ee), but with a
low yield and poor enantioselectivity (35% yield with 8% ee),
and no hydrogenation was observed with chiral ruthenium
catalyst RuCl2-(S)-Xyl-SDP/(R,R)-DPEN

12 and chiral iridium
catalyst Ir-(S)-PHOX,13 respectively. It is worth noting that
the hydrogenation products were dominated by thermody-
namically preferred trans-3a and the ratio of trans- to cis-isomer
was determined by the thermodynamic stability constant
between the isomers because the new generated stereocenter at
C3 could be easily epimerized under a strong base condition.
Thus, we selected (R)-1b as the choice of catalyst and tested a
series of 3-ethoxycarbonyl quinolin-2-ones 2 under the same
reaction conditions.
As shown in Scheme 3, the 3-ethoxycarbonyl quinolin-2-

ones 2a−g with 4-alkyl substituents could be smoothly
hydrogenated to the corresponding chiral dihydroquinolin-2-
ones 3a−g in high yields (94−95%) with excellent
enantioselectivities (98−99% ee). By changing these less
hindered alkyl substituents into relatively bulky cyclopropyl
(2h) and phenyl (2i) groups, the reaction rates became very

sluggish and less than 10% conversions were observed with
(R)-1b. Fortunately, by replacing (R)-1b with (R)-1a as the
catalyst and extending the reaction time to 48 h, a 53% yield
with 94% ee and 33% yield with 75% ee were observed for the
hydrogenation of 2h and 2i, respectively. Installing an electron-
withdrawing (2j) or electron-donating group (2k) has little
influence on the enantioselectivity (both 98% ee) while the
former achieved higher yields (3j−k). The substituent at the
nitrogen atom also has a noticeable effect on the reaction rate
and the enantioselectivity. When a methyl group at the
nitrogen atom of 2a (R = Me) was replaced by another alkyl
group such as ethyl (2l) and benzyl (2m), comparable results
were observed. However, when it was replaced by a phenyl
group such as 2n and 2o, very low conversions (<10%) were
observed with catalyst (R)-1b. Likewise, higher yields with
high enantioselectivities were obtained for the hydrogenation
of 2n (93% yield, 90%ee) and 2o (93% yield, 92% ee) with
(R)-1a, but a longer reaction time and higher catalyst loading
were required. The substrate 2p (R = H) with no substituent
at the nitrogen atom could also be hydrogenated with (R)-1b
at a higher reaction temperature (50 °C), providing 3p in 58%
yield with 83% ee.
These exciting results encouraged us to further explore the

asymmetric hydrogenation of 4-alkyl substituted 3-ethoxycar-
bonyl coumarins 4 (Scheme 4). Although high enantioselec-
tivity has been achieved by Zhou’s6 biomimetic asymmetric
reduction with NAD(P)H analogues based on chiral ferrocene
with hydrogen gas as the terminal reductant (Scheme 1b), low

Scheme 2. Evaluation of Chiral Catalysts for the
Asymmetric Hydrogenation of 2a

Scheme 3. Asymmetric Hydrogenation of 3-Ethoxycarbonyl
Quinolinones 2 with Catalyst (R)-1ba

aReaction conditions: 1.0 mmol scale, (R)-1b/tBuOK/2 = 1:400:500,
EtOH (2.0 mL), toluene (0.5 mL), room temperature (25−30 °C),
50 atm of H2; isolated yields. The trans/cis ratio was determined from
the crude 1H NMR spectra, and the ee value was determined by chiral
HPLC analysis. b0.2 mol % (R)-1a. c0.4 mol % (R)-1b, 50 °C. d0.4
mol % (R)-1a. e0.4 mol % (R)-1a, 50 °C.
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yield and moderate enantioselectivity (69% ee) were observed
for the hydrogenation of 4-methyl 3-ethoxycarbonyl coumarin
(4a). Under the similar conditions with (R)-1b as the catalyst
(0.1 mol % (R)-1b and 30 atm of H2), we found that the
asymmetric hydrogenation of 4-alkyl substituted 3-ethoxycar-
bonyl chromen-2-ones 4a−k were completed within 2 h and
afforded the corresponding 3,4-dihydrocoumarins 5a−k in
high yields (up to 95%) and excellent enantioselectivities (up
to 98% ee). The coumarin substrates bearing a less sterically
hindered 4-alkyl group, such as methyl (4a), ethyl (4b), and n-
propyl (4c), gave a higher yield and enantioselectivity. Lower
yields and enantioselectivities were observed for the substrates
with a relatively bulkier 4-alkyl group, such as iPr (4e) and Cy
(4f). The ester (4i) and Boc-amino (4j) group in the
substrates were compatible in the reaction. The chromen-2-
ones 4l−n with a cyclopropyl group also afforded reduction
products 5l−n in high yields and excellent enantioselectivities
(96−97% ee), providing an efficient and potential approach to
chiral pharmaceuticals with a cyclopropyl substituted benzylic
stereocenter.14 The substrate with a 4-phenyl group (4o) could
also be hydrogenated by catalyst (R)-1b, but with a lower
enantioselectivity (73% ee). Furthermore, a catalyst loading
experiment showed that the hydrogenation of 4a could be
performed at a very low catalyst loading (0.0033 mol % (R)-
1b, S/C = 30 000) at 60 atm of H2 pressure, providing
(3S,4R)-5a in 92% yield (TON = 28 000) and 94% ee.
We selected coumarin 4a as a model substrate and

performed DFT calculations to understand the origins of the
stereochemistry of reaction. The substrate 4a was through a
six-membered-ring transition state (outer-sphere mecha-

nism15) to approach the catalyst (R)-1b.10b To minimize the
steric repulsion of the bulky group at the 3-position of the
pyridine ring and the rigid spiro backbone of the catalyst, the
substrate 4a tends to approach the catalyst in the direction of
the ester side close to the rigid spiro backbone (Figure 2).

Thus, TS-RR was favorable for 4a, leading to the formation of
(3R,4R)-5a. Since cis-product (3R,4R)-5a was prone to
epimerize to thermodynamically more stable trans-isomer
(3S,4R)-5a under basic conditions, a mixture of products
dominated by trans-isomer (3S,4R)-5a was finally observed.
The calculation result (98% ee) is in good agreement with the
experimental result (95% ee). Furthermore, based on these
transition state models we can also explain why low reactivity
and moderate enantioselectivity with “opposite” configuration
were observed for the hydrogenation of 4-aryl substituted
substrates such as 2i and 4o with (R)-1b. To avoid the larger
steric hindrance between the aryl group and the rigid spiro
backbone of the catalyst (R)-1b, TS-SS, instead of TS-RR,
became favorable, which led to the formation of hydrogenated
products such as 3i and 5o with (3S,4R) and (3R,4R)
configurations, respectively.
To exemplify the utility of these efficient asymmetric

hydrogenations, we performed the enantioselective synthesis
of a cholesterol acyltransferase (ACAT) inhibitor R-10657816

and a selected 5-HT1A receptor antagonist MPR316017

(Scheme 5). The asymmetric hydrogenation of 4k (6.4 g, 20
mmol) with (S)-1b (0.005 mol %, S/C = 20 000) under 60
atm of H2 at room temperature for 60 h provided (3R,4S)-5k
in 92% yield with 98% ee. The decarboxylation of (3R,4S)-5k,
followed by a hydrolytic opening of the lactone ring and a
subsequent methylation of the phenol, afforded the acid (S)-7,
a key intermediate for the synthesis of R-106578, in 68% yield
over two steps. The enantioselective synthesis of MPR3160
was initiated by the methylation of (3R,4R)-3o with methyl
iodide followed by hydrolysis in one pot to deliver an acid
(3S,4S)-8 in 91% yield. The acid (3S,4S)-8 was then converted
into MPR3160 via a Curtius rearrangement followed by the
reduction with borane. It is noteworthy that the absolute
configuration of 3o and 8 were assigned as (3R,4R) and

Scheme 4. Asymmetric Hydrogenation of Chromen-2-ones
4 with Catalyst (R)-1ma

aReaction conditions: 1.0 mmol scale, (R)-1b/tBuOK/4 =
1:400:1000, EtOH (2.0 mL), room temperature (25−30 °C), 30
atm of H2; Isolated yield; The trans/cis ratio was determined from the
crude 1H NMR spectra, and the ee value was determined by chiral
HPLC analysis. b0.0033 mol % (R)-1b, 60 atm of H2 (initial).

c0.2
mol % (R)-1b.

Figure 2. Models of stereochemistry control for asymmetric
hydrogenations of 4a.
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(3S,4S), respectively, by X-ray diffraction analysis of the crystal
structure of acid 8.
In conclusion, we have developed an efficient catalytic

asymmetric hydrogenation of 3-ethoxycarbonyl quinolin-2-
ones and coumarins. With chiral spiro iridium catalyst (R)-1b,
a wide range of 4-alkyl substituted 3-ethoxycarbonyl quinolin-
2-ones and coumarins were hydrogenated to chiral dihydro-
quinolin-2-ones and dihydrocoumarins in high yields with
excellent enantioselectivities (up to 99% ee) and high turnover
numbers (up to 28 000). This protocol was successfully
applied for the enantioselective syntheses of MPR3160 and the
key chiral intermediate of R-106578.
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