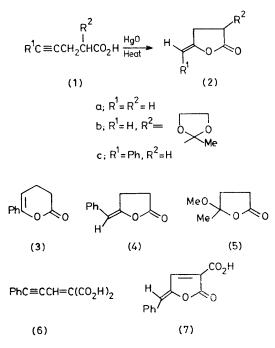
## Published on 01 January 1978. Downloaded by University of Prince Edward Island on 26/10/2014 01:29:38.

## Cyclisation of Acetylenecarboxylic Acids; a Novel Route to $\gamma$ -Methylenebutyrolactones

Ву Макото Уамамото


(Department of Chemistry, Saga University, Saga-shi 840, Japan)

Summary Various  $\gamma$ -methylenebutyrolactones have been synthesized in good yield by the cyclisation of acetylenecarboxylic acids in the presence of a catalytic amount of mercury(II) oxide.

COMPOUNDS which have an unsaturated  $\gamma$ - or  $\delta$ -lactone ring are reported to have carcinogenic<sup>1</sup> and antitumour<sup>2</sup> activity, as well as other biological properties.<sup>3</sup>

However, in contrast to the synthesis of other unsaturated butyrolactones, few syntheses of  $\gamma$ -methylenebutyrolactones have been reported.<sup>4</sup> A novel, high-yield synthesis of  $\gamma$ -methylenebutyrolactones by the cyclisation of acetylenecarboxylic acids in the presence of a catalytic amount of mercury(II) oxide is now reported.

Pent-4-ynoic acid (1a), which was prepared from diethyl malonate and prop-2-ynyl bromide followed by hydrolysis and decarboxylation, was heated at 60 °C for 30 min in the presence of yellow mercury(II) oxide [molar ratio of (1a): HgO 100:4-6) without solvent, and  $\gamma$ -methylenebutyrolactone (2a)<sup>4a</sup> was obtained in quantitative yield.<sup>†</sup> This cyclisation proceeded equally well in solvents such as chloroform, acetone, benzene, or dioxan.<sup>‡</sup> No  $\alpha$ - or  $\beta$ -angelica lactone, or 3,4-dihydro-2-pyrone was formed and the lactone (2a) was the sole product. Under similar conditions the acid (1b) gave the lactone (2b) in quantitative



<sup>†</sup> All compounds gave satisfactory spectral data and elemental analyses, e.g. (2a): (cf. ref. 4a); i.r. (liq. film) 1815 (vC=O), 1670 (vC=C), and 890 cm<sup>-1</sup> (=CH<sub>2</sub>);  $\delta$  (CCl<sub>4</sub>) 2·52—3·04 (m, 4H), 4·25 (m, 1H), and 4·66 (m, 1H); m/e 98 (M<sup>+</sup>), 70, and 56.

 $\ddagger$  When (1a) was heated at 100 °C for 3—6 h without mercury(II) oxide, (2a) was not obtained and (1a) was recovered almost quantitatively.

## J.C.S. CHEM. COMM., 1978

yield, and the methylenedioxy protecting group was not decomposed.

In contrast to these results, the acids (1c) and (1d) did not cyclise in 5-7 h below 80 °C in the presence of mercury-(II) oxide with or without solvent. However, when (1c) was heated at 110 °C in the presence of mercury(II) oxide without solvent for 3 h, compounds (2c) (37%) and [(3) + (4)] (41%) were obtained. Treatment of (1c) in refluxing dimethylformamide with mercury(II) oxide for 2 h gave the  $\gamma$ -methylene lactone (2c) (83%), m.p. 85–87 °C, accompanied by a mixture of (3) and (4) (9%). The exo-methylene proton signal appeared at  $\delta$  5.4 and 6.5 in the n.m.r. spectra of (2c) and (4), respectively. The synproton (adjacent to the oxygen) signal would appear at lower field than the *anti*-proton,  $^{4a}$  so (2c) was shown to be the isomer having the anti-proton arrangement. From its i.r. and n.m.r. spectra§ compound (3) was assigned the sixmembered enol-lactone structure.

When the diacid (6) was heated under reflux in dimethylformamide for 1 h in the presence of HgO, (7) (88%) was formed, m.p. 220-222 °C (decomp.) (lit., 5 218 °C, decomp).

The acid (1a) also cyclised under similar conditions in methanol to give the saturated lactone (5) (68%). The saturated lactone (5) was also formed by treatment of (2a) with mercury(II) oxide in refluxing methanol, but (5) was not formed by treatment of (2a) with toluene-*p*-sulphonic acid in refluxing methanol.

Treatment of the lactone (2a) with hydrochloric acid in refluxing methanol afforded methyl 4-oxopentanoate in quantitative yield.

This work was financially supported by Saneyoshi Foundation.

## (Received, 19th April 1978; Com. 407.)

§ Spectral data for (3) (crude): i.r. (KBr) 1760, 1670, and 695 cm<sup>-1</sup>. (cf. K. Yamada, Y. Togawa, T. Kato, and Y. Hirata, *Tetrahedron*, 1971, 27, 5445.); δ (CDCl<sub>3</sub>)  $2\cdot42-2\cdot80$  (m, 4H),  $5\cdot76$  (t, 1H), and  $7\cdot20-7\cdot64$  (m, 5H).

<sup>1</sup> F. Dickens and H. E. H. Jones, *Brit. J. Cancer*, 1961, **15**, 85; F. Dickens, H. E. H. Jones, and H. B. Waynforth, *ibid.*, 1966, **20**, 134. <sup>2</sup> S. M. Kupchan, R. W. Britto, M. F. Ziegler, C. J. Gilmore, R. J. Restivo, and R. F. Bryan, *J. Amer. Chem. Soc.*, 1973, **95**, 1335 and references therein.

 <sup>a</sup> Y. Iino, A. Tanaka, and K. Yamashita, Agric. and Biol. Chem. (Japan), 1972, 36, 2505.
<sup>4</sup> (a) V. Jäger and H. J. Günther, Tetrahedron Letters, 1977, 2543 and references therein; (b) Y. S. Rao, ibid., 1975, 1457 and references therein.

<sup>5</sup> J. Castaner and J. Pascual, J. Chem. Soc., 1958, 3962; J. Auerbach and S. M. Weinreb, J. Org. Chem., 1975, 40, 3311.