Arch. Pharm. (Weinheim) 320, 693-697 (1987)

Biotransformation of Phthalideisoquinoline Alkaloids by Corydalis Tissue Cultures

Kinuko Iwasa*, Miyoko Kamigauchi, and Narao Takao**'

Kobe Women's College of Pharmacy, Motoyamakita-machi, Higashinaduku, Kobe 658, Japan Eingegangen am 27. Oktober 1986

The phthalideisoquinolines (-)- α - and (-)- β -narcotine and (-)- β -hydrastine are metabolized to hydrocotarnine and hydrohydrastine, respectively, by Corydalis tissue cultures.

Biotransformation von Phthalidisochinolin-Alkaloiden durch Corydalis Zellkulturen

Die Phthalidisochinolinalkaloide (-)- α - und (-)- β -Narkotin und (-)- β -Hydrastin werden durch Corydalis Zellkulturen zu Hydrocotarnin und Hydrohydrastin metabolisiert.

Biotransformations of 13-oxoprotopines to the spirobenzylisoquinoline- and benzindanoazepine-type alkaloids by cell cultures of *Corydalis* species have been reported¹⁾. Addition of the substrate to cell cultures had led to products not normally present in cell cultures and even in intact plants in certain cases^{1, 2)}.

We have now investigated the biotransformation of phthalideisoquinoline alkaloids into other classes of alkaloids. The phthalideisoquinoline alkaloids, (+)-bicuculline (1) and (+)-adlumine (2), have been isolated from *C. ochotensis var. raddeana*³⁾, 1 from *C. platycarpa*⁴⁾ and (-)-adlumine (3) from *C. ophiocarpa*⁵⁾. We used (-)- α - and (-)- β -narcotine (4 and 5) and (-)- β -hydrastine (6) for biotransformation experiments by cell cultures of these plants. Hydrocotarnine (7), meconine (9)⁶⁾, 1-methylcorypalline (10)⁷⁾, and N-nor-1-methylcorypalline (11)⁷⁾ were isolated from the calluses, to which 4 or 5 were administered besides a mixture⁶⁾ of 4 and 5 (Exper. 1 and 3-6 in Tab. 1).

In Exper. 2, only 4 and 7 were isolated. From calluses, to which 6 was fed, hydrohydrastinine (8), 9^{6} , 10^{7} , and 11^{7} were obtained (Exper. 7–9). These experiments indicate that (–)- α - or (–)- β -narcotine and (–)- β -hydrastine can be metabolized to hydrocotarni-

•••) Dedicated to Prof. Dr. Maurice Shamma, The Pennsylvania State University, USA, on the occasion of his 60th birthday.

0365-6233/87/0808-693 \$ 02.50/0

[©] VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1987

ne and hydrohydrastinine, respectively, by corydalis tissue cultures *via* reductive cleavage of the C-1 and C-9 bond. By a feeding experiment under mild conditions (Exper. 2) and by blank experiments, this conversion was confirmed to be due to an enzyme reaction. (-)- α - and (-)- β -narcotine were much more readily metabolized than (-)- β -hydrastine.

Experimental Part

M.p.s. uncorr. – MS: Hitachi M80 (75 eV), Isobutane was used for chemical ionization. – ¹H-NMR-spectra: CDCl₃, Varian XL-200 (200.0 MHz), TMS as int. standard. – IR-spectra: EPI-G2 (Hitachi). – Optical rotations: Na-D, DIP-SL (JASCO) polarimeter. – Tic and prep. tlc: Merck 60F-254, silica gel.

Callus Cultures and Extraction

The calluses of *C. ochotensis var. raddeana, C. ophiocarpa*, and *C. platycarpa* were subcultured on *Murashige* and *Skoog's* agar medium fortified with 2,4-dichlorophenoxyacetic acid (1 mg/l), kinetin (0.1 mg/l), and yeast extract (0.1 %). Hydrochlorides of **4**, **5**, and **6** (300 mg) were dissolved in the same agar medium (2 l) for experiments with *C. ochotensis var. raddeana* and *C. platycarpa* and in 1.6 l medium in the case of *C. ophiocarpa* and autoclaved (without Exp. 2). The calluses were incubated at 24° (at 22° in the case of *C. ophiocarpa*) for the appropriate time (Tab. 1). **4**-HCl (100 mg) in H₂O (3.6 ml) was injected into the autoclaved medium (400 ml) through a sterile bacterial filter. The callus was incubated at 24° for 12 days (Exp. 2). After incubation, the cells and solid medium were separated and worked up as shown in sheme 1.

* In Exp. 2, only 4 and 7 were isolated. In Exp. 7-9, 6 and 8 were isolated instead of 4 + 5 and 7, respectively.

7: MS: m/z (rel. Int./%) = 221 (M⁺⁺, 100), CI-MS: m/z = 222 (M⁺⁺ + 1). $-{}^{1}$ H-NMR: δ (ppm) = 2.49 (s, 3H), 2.63 (t, 2H), 2.89 (br. s, 2H), 3.84 (s, 2H), 4.02 (s, 3H), 5.92 (s, 2H), 6.36 (s, 1H). – IR-spectrum identical with that of authentic 7. 7-HCl (MeOH/Me₂CO): m.p. 230–234° (decomp.).

8: CI-MS: $m/z = 192 (M^{++} + 1)$. $- {}^{1}H$ -NMR: δ (ppm) = 2.45 (s, 3H), 2.66 (t, 2H), 2.83 (t, 2H), 3.50 (s, 2H), 5.92 (s, 2H), 6.51 (s, 1H), 6.60 (s, 1H). Data agree with hydrohydrastinine (8). 8-HCl (Me₂CO): m.p. 227-235° (decomp.).

9: m.p. $96-97^{\circ}$ (lit.⁸⁾ $102-103^{\circ}$). – MS: m/z (rel. Int./%) = 194 (M⁺⁺, 100), CI-MS: m/z = 195 (M⁺⁺ + 1). – IR (Nujol) 1765 cm⁻¹. – ¹H-NMR: δ (ppm) = 3.96 (s, 3H), 4.14 (s, 3H), 5.23 (s, 2H), 7.12 (d, J = 8/0 Hz, 1H), 7.27 (d, J = 8/0 Hz, 1H). – IR spectrum identical with that of authentic 9.

10: CI-MS: $m/z = 208 (M^{++} + 1)$. – IR (CHCl₃): 3545 cm⁻¹. – ¹H-NMR: δ (ppm) = 1.38 (d, J = 6/5 Hz, 3H), 2.50 (s, 3H), 2.6–4.0 (m, 4H), 3.56 (q, J = 6/5 Hz, 1H), 3.88 (s, 3H), 6.59 (s, 1H), 6.71 (s, 1H). Data agree with 1-methylcorypalline (**10**)².

Tab. 1:	: Administrations of <i>carpa</i> , and <i>C. platyc</i>	(-)-a-narcot arpa.	ine (4), (-)-β-n	arcotine (5), and	i (-)-β-hyċ	lrastine (6)	to cell cu	ltures of	C. ocho	tensis va	ır. radde	ana, C. o	-ohio-
Ex- peri- ment No.	Cell culture	Wt. of dried cells g	Substrate (300 mg each)	Incubation time day	Wt. of alka fractic cell	crude lloid on, mg medium	4 + 5	٢	10	11 in mg)	a	Ŷ	œ
-	C. ochotensis var. raddeana	15.1	4	36	66	48	40	36	e	-	46		
2	C. ochotensis var. raddeana	3.4	4 ^{a)}	12	64	14	55 ^{a)}	7					
e	C. platycarpa	11.1	4	31	93	41	45	42			47		
4	C. ochotensis var. raddeana	14.4	Ş	38	49	64	38	39	٢	S	38		
s	C. ophiocarpa	6.8	S	46	65	59	57	34	7	4	28		
9	C. platycarpa	10.5	5	29	72	41	36	36			44		
٢	C. ochotensis var. raddeana	14.0	6	38	102	30			11	11	18	11	11
æ	C. ophiocarpa	8.8	6	46	58	53			2	S	9	83	14
6	C. platycarpa	14.4	9	37	86	45					18	48	14
a) 4 (1	00 mg) was administ	ered and 4 ((55 mg) was red	overed.									

11: CI-MS: $m/z = 194 (M^{++} + 1)$. – IR (CHCl₃): 3560 cm⁻¹. – ¹H-NMR: δ (ppm) = 1.46 (d, J = 7/0 Hz, 3H), 2.6–4.0 (m, 4H), 3.88 (s, 3H), 4.10 (q, J = 7/0 Hz, 1H) 6.60 (s, 1H), 6.73 (s, 1H). Data agree with N-nor-1-methylcorypalline (11). 11-HCl (MeOH-Me₂CO): m.p. 175–180° (decomp.). [α]_D \pm 0° (c 0/3; CHCl₃-MeOH).

The ¹H-NMR-spectrum of the substrate recovered from Exper. 1 and 3 showes a *ca*. 3:1 mixture of 4 and 5. – The ¹H-NMR-spectrum of the substrate recovered from Exper. 4–6 showes a *ca*. 1:2 mixture of 4 and 5. – 6 recovered from Exper. 7–9 was characterized by direct comparison ($[a]_D$, IR, and ¹H-NMR) with an authentic sample of (–)- β -hydrastine (6).

Blank Experiments

The medium (400 ml) containing 4-HCl (50 mg) was autoclaved and incubated under the conditions of Exp. 1: a mixture of 4 + 5 (3:1, 18 mg) was obtained besides 9 (16 mg). 6-HCl treated as in Exp. 7 gave 29 mg 6 and 9 mg 9 from 50 mg 6-HCl.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References and Notes

- 1 K. Iwasa, A. Tomii, N. Takao, T. Ishida, and M. Inoue, J. Chem. Research (S), 1985, 16; J. Chem. Research (M), 1985, 0301-0329.
- 2 K. Iwasa and N. Takao, *Phytochemistry* 21, 611 (1982); N. Takao, M. Kamigauchi, and M. Okada, *Helv. Chim. Acta* 66, 473 (1983).
- 3 T. Kametani, M. Takemura, M. Ihara, and K. Fukumoto, J. Chem. Soc. Trans Perkin I, 1977, 390.
- 4 R. H. F. Manske, Can. J. Res. Sect. B, B21, 13 (1943).
- 5 R. H. F. Manske, Can. J. Res. Sect. B, B17, 51 (1939).
- 6 Isomerizations of 4 to 5 and of 5 to 4 and formation of 9 occured under autoclave conditions (120°), used in the feeding experiments.
- 7 Compounds, 10²⁾ and 11 are found in the tissue cultures of C. ophiocarpa and C. ochotensis var. raddeana without addition of the phthalideisoquinolines. - For 10 see S. Naruto and H. Kaneko, Phytochemistry 12, 3008 (1973); for 11 see J. Strömborn and J. G. Bruhn, Acta Pharm. Suec. 15, 127 (1978).
- 8 W. H. Perkin, jun. and R. Robinson, J. Chem. Soc. 99, 775 (1911).

[Ph 264]