Reaction of Dimethyl N-Aryl- and N-Alkylcarbonimidodithioates with Aminoacetaldehyde Diethyl Acetal: A Direct Synthesis of 1-Aryl- and 1-Alkyl-2-methylthioimidazoles

Dinah Pooranchand, Hiriyakkanavar Ila,* Hiriyakkanavar Junjappa*

Department of Chemistry, North-Eastern Hill University, Shillong 793 003, Meghalaya, India

The reaction of dimethyl *N*-aryl- or *N*-alkylcarbonimidodithioates with aminoacetaldehyde diethyl acetal in refluxing acetic acid affords 1-aryl or 1-alkyl-2-methylthioimidazoles in good yields. Dimethyl *N*-isopropylcarbonimidodithioate gave 1-isopropylimidazole-2(3*H*)-thione under similar conditions.

Dimethyl N-aryl- and N-alkylcarbonimidodithioates are known for a long time. 1,2 However, their synthetic application has hitherto been relatively limited despite their easy access

from a large number of aromatic and aliphatic amines.² Some of their recent applications include the synthesis of cyclic guanidine derivatives, 3 β -lactams, 4 dihydro-1,3,5-oxadiazines, 5 as well as lithiation reactions leading to 2-arylimino- and 2alkylimino-1,3-oxathiolanes⁶ and α-branched amino acids.⁷ We now report the application of these compounds to the synthesis of 1-aryl- and 1-alkyl-2-methylthioimidazoles by reaction with aminoacetaldehyde acetals.

The reaction of dimethyl N-phenyliminocarbonimidodithioate (1a) with aminoacetaldehyde diethyl acetal (2) in boiling acetic acid afforded, after work-up, 1-phenyl-2-methylthioimidazole (3a) in 80 % yield. The reaction was found to be general for other N-arylcarbonimidodithioates (1b-i) under similar conditions, the corresponding imidazoles 3b-i being obtained in 80-90% overall yields (Table). When the reaction was extended to the synthesis of 1-alkyl-2-methylthioimidazoles, the 1-methyl (3j), 1-ethyl (3k), and 1-benzyl (3l) derivatives could be obtained in good yields. However, the analogous reaction with the Nisopropyl derivative 1 m afforded only 1-isopropylimidazole-2(3H)-thione (4). The desired imidazole 3 m (R = i-C₃H₇) which was formed in low yield during the initial period (1h) of the

4 (75% from 1m)

1, 3	R	1, 3	R
a	C ₆ H ₅	h	3-ClC ₆ H ₄
b	4-CH ₃ C ₆ H ₄	i	$2,4,5-(CH_3O)_3C_6H_2$
2	4-CH ₃ OC ₆ H ₄	i	CH ₁
1	4-ClC ₆ H ₄	k	C,H,
•	$4-BrC_6H_4$	1	$C_6H_5CH_2$
•	2-CH ₃ C ₆ H ₄	1m	i-C ₃ H ₂
	2-ClC ₆ H ₄		- 3/

Table. 1-Aryl- and 1-Alkyl-2-methylthioimidazoles 3a-1 Prepared

Product	Reaction time (h)	Yield ^a (%)	m.p. (°C) ^b	Molecular Formula ^c or Lit. m.p. (°C)	MS $(70 \text{ eV})^d$ $m/e \text{ (M}^+) \text{ (%)}$	IR (KBr/neat) ^e v(cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) f δ
3a	10	80	55g	53-54°	The state of the s		a montage man man and the population of the state of the
3b	10	89	75	C _{1±} H ₁₂ N ₂ S (204.2)	204 (61)	3160, 3010, 1510, 1440	2.39 (s, 3H, CH ₃); 2.54 (s, 3H, SCH ₃); 7.00 (s, 1H, H-4); 7.03 (s, 1H, H-5); 7.31 (s,
3c	11	85	100	$C_{13}H_{12}N_2OS$ (220.2)	220 (60)	3120, 3000, 1510, 1442	4H _{arom}) ^h 2.45 (s, 3H, SCH ₃); 3.76 (s, 3H, OCH ₃); 6.70-7.29 (m,
3d	10	81	110112	C ₁₀ H ₉ CIN ₂ S (224.6)	224 (100); 226 (96)	3120, 2900, 1480, 1435	6H, H-4, H-5, 4H _{arom}) 2.50 (s, 3H, SCH ₃); 6.98 (s, 1H, H-4); 7.07 (s, 1H, H-5);
3e	10	90	97	C ₁₀ H ₉ BrN ₂ S (269.1)	268 (35); 270 (10)	3095, 2925, 1481, 1440	7.32 (m, 4H _{arom}) ^h 2.50 (s, 3H, SCH ₃); 7.00 (s, 1H, H-4); 7.05 (s, 1H, H-5);
3f	15	82	oìl	$C_{14}H_{12}N_2S$ (204.2)	204 (38)	3102, 3024, 1490, 1458	7.00-7.65 (m, 4H _{arom}) ^h 2.05 (s, 3H, CH ₃); 2.51 (s, 3H, SCH ₃); 6.81 (s, 1H, H-4); 6.96 (s, 1H, H-5); 7.05-7.40
3g	16	83	oil	C ₁₀ H ₉ ClN ₂ S (224.6)	224 (80); 226 (35)	3100, 3051, 1590, 1480,	(m, 4H _{arom}) ^h 2.50 (s, 3H, SCH ₃); 6.84 (s, 1H, H-4); 6.94 (s, 1H, H-5);
3h	10	80	45	C ₁₀ H ₉ ClN ₂ S (224.6)	224 (81); 226 (79)	1435 3108, 3092, 1590, 1482,	7.0-7.55 (m, $4H_{arom}$) ^h 2.51 (s, 3H, $SC\underline{H}_3$); 6.90 (s, 2H, \underline{H} -4 and \underline{H} -5); 7.0-7.35
3i	10	81	120	$C_{13}H_{16}N_2O_3S$ (280.1)	280 (93)	1473 3110, 3095, 1595, 1509, 1443	(m, 4H _{arom}) ^h 2.51 (s, 3H, SCH ₃); 3.71 (s, 3H, OCH ₃); 3.73 (s, 6H, OCH ₃); 6.50 (s, 2H, H-4 and
3k	12	80 81	oil ^g oil ^g	oil ⁹ oil ⁹			H-5); 6.90 (s, 2H _{arom}) ^h
31	15	85	oil	oil ¹³	204 (100)	3100, 3058, 1492, 1450, 1425	2.52 (s, 3H, SC \underline{H}_3); 5.00 (s, 2H, C ₆ H ₅ C \underline{H}_2); 6.72 (s, 1H, \underline{H} -4); 6.90 (s, 1H, \underline{H} -5); 6.90–7.30 (m, 5H _{arom}) ^h

Yield of pure isolated product.

 $J_{4,5}$ is not clearly resolved.

Uncorrected, measured with a Thomas Hoover Capillary meltingpoint apparatus.

Satisfactory microanalyses obtained: $C \pm 0.29$, $H \pm 0.33$, $N \pm 0.35$.

Recorded on Jeol JMS-D 300 spectrometer.

Recorded on a Perkin-Elmer 297 Infrared spectrophotometer.

Recorded on Varian EM-390 NMR spectrometer.

The products 3a, 3j, and 3k were characterized by comparison of their IR and 'H-NMR spectral data with reported values9 as well as by mass spectra and microanalyses.

reaction was found to undergo rapid demethylation to the thione 4 (as monitored by TLC), probably due to steric hindrance.⁸ This was further confirmed by refluxing 3m (prepard by a known procedure⁹) in acetic acid for 1 h, the thione 4 being obtained in nearly quantitative yield (95%).

In summary, dimethyl N-aryl- and N-alkylcarbonimido-dithioates (1) are useful precursors of 1-aryl-, 1-methyl-, 1-ethyl-, and 1-aralkyl-2-methylthioimidazoles which (3 \mathbf{a} , \mathbf{j} , \mathbf{k} , \mathbf{l}) were earlier obtained by a two-step procedure involving synthesis of the corresponding imidazole-2(3H)thiones and their methylation. $^{9-14}$ The starting materials \mathbf{l} \mathbf{a} - \mathbf{l} were prepared according to the reported procedure. 2

1-Aryl-and alkyl-2-methylthioimidazoles (3a-1); General Procedure:

A solution of the dimethyl N-aryl- or N-alkylcarbonimidodithioate 1 (10 mmol) and aminoacetaldehyde diethyl acetal (2; 2.0 g, 15 mmol) in AcOH (10 mL) is heated to boiling for 10–15 h. Then, AcOH is removed under vacuum and the residue is dissolved in CHCl₃ (50 mL). This solution is washed with $\rm H_2O$ (3×30 mL), dried (Na₂SO₄), and evaporated to give the crude product 3 which is purified by column chromatography on silica gel using EtOAc/hexane (1:4) as eluent, and crystallized from CH₂Cl₂.

1-Isopropylimidazole-2(3H)-thione (4):

From 1m: A solution of dimethyl *N*-isopropylcarbonimidodithioate (1m; 1.50 g, 10 mmol) and aminoacetaldehyde diethyl acetal (2; 2.0 g, 15 mmol)in AcOH (10 mL) is heated to boiling for 20 h until compound 1m has been consumed completely (TLC, EtOAc/benzene 1:4). Workup as in the General Procedure gives the thione 4 as pale-colored crystals (from CH_2Cl_2); yield: 1.00 g (75%); m.p. 169-70°C (Lit. 11 m.p. 168-9°C, superimposable IR and NMR spectra).

From 3m: A solution of 1-isopropyl-2-methylthioimidazole (3m; AcOH (10 mL) is refluxed for 1 h. Work-up of the (mixture as described gives 4; yield: 0.43 g (95%) mixture m.p., superimposable IR and NMR spectra).

Received: 29 December 1986; revised: 23 April 1987

- Delépine, M. Bull. Soc. Chim. Fr. 1902, [3] 27, 807.
 Fromm, E., Block, M. Ber. Dtsch. Chem. Ges. 1899, 32, 2219.
- (2) Linden, A., Sandström, J. Tetrahedron 1971, 27, 2893.
- (3) Houghten, R.A., Simpson, R.A., Hanson, R.N., Rappert, H. J. Org. Chem. 1979, 44, 4536.
- (4) Sullivan, D. F., Scopes, D. I. C., Kluge, A. F., Edwards, J. A. J. Org. Chem. 1976, 41, 1112.
 - Metzger, C., Wegler, R. Chem. Ber. 1968, 101, 1120.
- (5) Milzner, K., Seckinger, K. Helv. Chim. Acta. 1974, 57, 1614.
- (6) Hoppe, D., Follmann, R., Beckmann, L. Liebigs Ann. Chem. 1980, 1765.
 Hoppe, D. Angew. Chem. 1975, 87, 449; Angew. Chem. Int. Ed. Engl. 1975, 14, 424.
- (7) Hoppe, D. Angew. Chem. 1975, 87, 450; Angew. Chem. Int. Ed. Engl. 1975, 14, 426.
- (8) Kister, J., Assef, G., Mille, G., Metzger, J. Can. J. Chem. 1979, 57.
- (9) Kister, J., Assef, G., Metzger, J. Can. J. Chem. 1979, 57, 813.
- (10) Grimmett, M.R., in: Comprehensive Heterocyclic Chemistry Vol. 5, Part 4A, Potts, K.T. (ed.), Pergamon Press, Oxford, 1984 p. 473.
- (11) Reuben, G.J., Kornfeld, E.C., Mclaughlin, K.C., Anderson, R.C. J. Am. Chem. Soc. 1949, 71, 4000.
- (12) Cannon, W.N., Powell, C.E., Jones, R.G. J. Org. Chem. 1957, 22 1323.
- (13) Simon, I.B., Kovtunovskaya, I.I. Endokrinol. 1961, 18, 355; C.A 1963, 58, 7921.
- (14) Hassanaly, P., Dori, H.J.M., Metzger, J. Synthesis 1977, 253.