
Vol.:(0123456789)1 3

Molecular Diversity 
https://doi.org/10.1007/s11030-021-10242-2

ORIGINAL ARTICLE

Synthesis and potent antimicrobial activity of novel coumarylthiazole 
α‑aminophosphonates derivatives

Bilal Litim1  · Zinelaabidine Cheraiet2 · Saida Meliani3 · Abdelghani Djahoudi4 · Abbes Boukhari1

Received: 24 March 2021 / Accepted: 28 May 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract 
Herein, we reported a novel series of α-aminophosphonates derivatives (IV)a–m bearing an important pharmacophore 
coumarylthiazole moiety. All the new compounds have been synthesized via Kabachnik–Fields reaction under ultrasonic 
irradiation. The products were obtained in good yield with a simple workup and were confirmed using various spectroscopic 
methods. All these compounds (IV)a–m were screened for their in vitro for antimicrobial activity against thirteen Gram-
negative bacteria and five Gram-positive bacteria and Candida albicans strains. The results showed that all the synthesized 
compounds exhibited moderate antibacterial activities against both references and multidrug-resistant and antifungal strains. 
The compound (IV)e showed the highest activities against all pathogens of the tested microbial strains with MIC of 0.125 μg/
mL. The compounds (IV)h, (IV)f, (IV)b, and (IV)d exhibited moderate and promising activities with MIC of 0.125 μg/mL. 
Structure–activity relationship revealed that inhibitory activity of the synthesized compounds is related to the type of the 
substituted group on phenyl rings, and these results showed that the electron-donating groups at ortho and para positions 
have a high relationship increasing antimicrobial activities than the electron‐withdrawing groups. These results confirm that 
coumarylthiazole α-aminophosphonates compounds can be potential antimicrobial drugs candidate.
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Introduction

According to a report by World Health Organization (WHO), 
multidrug-resistant pathogen strains are among the biggest 
challenges in treating bacterial infections diseases world-
wide, urgent strategy is required to fight antimicrobial resist-
ance expected to cause more financial crisis by forcing 24 
million people into extreme poverty by 2030 and causing 10 
million deaths annually by 2050 [1]. Based on these facts 
and due to the high degree of antimicrobial resistance, the 
discovery of new and effective antibacterial drugs must be 
discovered to overcome bacterial resistance and develop 
effective treatments [2].

Current strategies in the pharmacological research of new 
lead compounds mostly refer to a large collection of mol-
ecules proven to be broadly and useful as therapeutic agents 
such as pyrazolone and its derivatives [3, 4], benzoxazole 
[5], indole [6], pyrimidine analogs [7]. Therefore, com-
pounds that contain thiazole heterocycles are well known in 
a variety of natural products [8], thiazole derivatives exhibit 
a broad spectrum in various synthetic pharmaceuticals and 
medicinal chemistry [9] such as antimicrobial and antima-
larial agents [10], Alzheimer [11], antiproliferative agents 
[12], anti-cancer agents [13], and anti-inflammatory [14]. In 
addition, Coumarin and its derivatives constitute an impor-
tant class of heterocyclic compounds that hold an impera-
tive place in medicinal chemistry. They are distributed in 
nature and possess a large array of pharmacological activi-
ties like antibacterial, anticoagulant, anti-HIV, antioxidant, 
antitubercular, antihypertensive, anticonvulsant, antifungal, 

antihyperglycemic, inhibition of diverse enzymes, and anti-
cancer [15, 16]. Moreover, the biological activities of the 
different analogs of the synthesized coumarins are influ-
enced by their substitution in different positions, among 
these derivatives the coumarins having various substituted 
thiazole rings show promising biological activities [17]. 
Recently, many scientific studies on analogs of the coumar-
ylthiazole motif having potential biological activities such 
as anti-acetylcholinesterase [18] 1, anti-inflammatory [19], 
antibacterial and anti-tuberculosis agents [20] 2, as well as 
inhibition of carbonic anhydrase and antioxidant have been 
carried out [21, 22] 3.4 (Fig. 1).

Recently, the synthesis of α-aminophosphonates has 
attracted the attention of many scientific researchers in 
organic and medicinal chemistry [23], due to structural 
analogies to amino acids and their various pharmacologi-
cal properties [24], such as anti-Alzheimer [25], antimi-
crobial [26], antiviral [27], and antioxidant [28]. Access 
to α-aminophosphonates moiety has been achieved by 
various methods [29]. The Kabachnik–Fields reaction is 
one and the simplest of the most practical approaches for 
α-aminophosphonate syntheses described in the literature. 
The reaction generally requires various catalysts, such 
as ethyl lactate [30], phenyl phosphonic acid [31], xan-
than sulfuric acid [32],  SnCl2 [33],  TiO2 [34],  FeCl3 [35], 
Amberlite-IR 120 [36], Yb(PFO)3 [37],  SbCl3/Al2O3 [38], 
and  CF3CO2H [39]. However, many of these catalysts suf-
fer from at least one of the following drawbacks such as low 
yields, long reaction times, high reaction temperature, tedi-
ous workup, use unrecyclable catalysts, so an inexpensive 

Fig. 1  Biological profile of 
coumarylthiazole derivatives
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alternative to α-aminophosphonates can be used, namely sol-
vent-free and using green catalyst conditions is our aim [40].

In this work, we have synthesized and characterized 
novel α-aminophosphonates derivatives substituted with 
coumarylthiazole rings using Kabachnik–Fields reaction 
under ultrasonic irradiation and solvent-free conditions, the 
antimicrobial activities of the synthesized compound were 
evaluated against references and multidrug-resistant bacteria 
and Candida albicans strain.

Results and discussion

Chemistry

Coumarylthiazole derivatives are known for their potential 
antibacterial activity [20]. Our design strategy was based on 
the synthesis of new α-aminophosphonates containing cou-
marylthiazole scaffold. On the other hand, we thought that 
the presence of α-aminophosphonates moiety contributes 
to improving the biological activity against references and 
multidrug-resistant bacteria.

A new series of α-aminophosphonates derivatives (IV)
a–m containing an important pharmacophore (coumarylthi-
azole heterocycle) were synthesized, and using Kabach-
nik–Fields reaction conditions, the reaction to give the target 
compounds (IV)a–m it was started from 3-(2-aminothiazol-
5-yl)-2H-chromen-2-one (III), aldehyde, and triethyl phos-
phite under ultrasound irradiation using a green ionic liquid 
[TEAA] as a catalyst at ambient temperature (Scheme 1). 
The reaction conditions, yields, and reaction times are sum-
marized in Table 1.

The first step of the synthesis involved the formation of 
3-acetylcoumarin (I) obtained by the condensation between 
salicylaldehyde and ethyl acetoacetate in ethanol at 0–5 °C 
in the presence of a catalytic amount of piperidine. The sec-
ond precursor, 3-(2-bromoacetyl)-2H-chromen-2-one (II), 
was synthesized by brominating 3-acetyl coumarin in chlo-
roform. 3-(2-aminothiazol-5-yl)-2H-chromen-2-one (III) 
was obtained by reaction of compound (II) with thiourea in 
ethanol and neutralized with ammonia. Finally, compounds 
(IV) a-m were obtained when reacted 3-(2-aminothiazol-
5-yl)-2H-chromen-2-one (III), aldehyde, and triethyl phos-
phite via Kabachnik–Fields reaction under ultrasonic irra-
diation in the presence of ionic liquid [TEAA] as a catalyst. 
This procedure offers several advantages such as giving pure 
product without chromatography purification and high yield 
in a short time reaction (Scheme 1).

Firstly, we have reported Kabachnik–Fields reaction 
between 3-(2-aminothiazol-5-yl)-2H-chromen-2-one (III), 
benzaldehydes, and triethyl phosphite in different solvents 
such as toluene, THF, acetonitrile, and ethanol. After the 
reaction mixture was stirred at reflux for 120 min, no desired 
product was detected (Table 1, entries 1, 2, 3, and 4). The 
solvent has been found to have a remarkable effect on the 
evaluation of the reaction and the yields found vary around 
0–30%. Then, we have wanted to improve these results by 
using an ionic liquid with an acid–base character of Brönsted 
[TEAA] as a solvent and catalyst. The reaction is carried out 
under reflux in ethanol and without solvent under ultrasonic 
irradiations. It was found that the reaction without solvent 

Scheme 1  Synthesis of new 
α-aminophosphonates substi-
tuted coumarylthiazole (IV)a–m 
derivatives

Table 1  Optimization of reaction conditions

Conditions: 1  mL TEAA (triethylammonium acetate), 1  mmol sub-
strate, US (ultrasounds) 40 kHz
nr  no reaction
a Yield (%): a yield of isolated product

Entry Solvent Temp. (°C) Time (min) Yield (%)a

1 CH3CN 110 120 nr
2 PhCH3 120 120 nr
3 THF 90 120 10
4 EtOH 80 120 30
5 EtOH/TEAA 80 120 52
6 TEAA/US rt 10 92
7 TEAB/US rt 60 20
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Table 2  Ultrasound irradiations 
assisted synthesis of 
α-aminophosphonates in ionic 
liquid TEAA

Compound R Time (min) Yield (%) M.p. (°C)

a 30 83 204.0–205.7

b 20 75 221.3– 222.4

c 15 82 243.4– 244.2

d 10 87 184.0– 188.0

e 30 65 262.1– 263.4

f 150 73 212.6– 213.1

g 30 90 215.4– 216.6

h 30 75 193.5– 194.4

i 60 69 228.9– 229.7

j 120 76 236.8– 237.5

k 180 65 207.1– 208.3

l 25 92 210.5– 211.4

m 30 91 213.1– 214.2

Conditions: aldehyde (1  mmol), amine (1  mmol), triethylphosphite (1  mmol), TEAA 
(1 mL), 40 kHz
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in ionic liquid [TEEA] and under ultrasonic irradiation was 
given the best yield (92%) after 10 min (Table 1, entries 5 
and 6).

To present the effectiveness of TEAA as a catalyst in the 
synthesis of α-aminophosphonates, we have used another 
ionic liquid TEAB which has the same character as TEAA, 
the results showed that TEAA is more efficient than another 
ionic liquid (Table 1, entry 7).

All the new compounds (IV)a–m were characterized 
by spectroscopic techniques IR, 1H-NMR, 13C-NMR, 31P-
NMR, and 2D NMR heteronuclear single‐quantum coher-
ence [HSQC], heteronuclear multiple bond correlation 
[HMBC], and elemental analysis. This confirmed the exact 
structure of the compounds (Table 2).

The infrared spectroscopic indicated the absorptions 
at 3418  cm−1 and 1233  cm−1 corresponded to (N–H) and 
(P=O) stretching, respectively, of α-aminophosphonates 
groups. Absorptions at 1540  cm−1 corresponded to imine 
group (C=N) stretching for thiazole ring, and absorptions 
at 1716   cm−1 corresponded to lactone group (O–C=O) 
stretching from coumarin rings. From the 1H-NMR spec-
troscopic, it was possible to observe the presence of sig-
nals at δ = 1.2  ppm and δ = 4.1  ppm corresponded to 
methyl (CH3–CH2–O–P) and methylene  (CH3–CH2–O–P), 
respectively, of phosphonates groups; the proton (N–H) of 
α-aminophosphonates groups was detected at δ = 8.9 ppm, 
the signal between δ = 5.6—6.5 ppm corresponded the pro-
ton from asymmetric Carbone (*C), the signals of protons 
corresponded the thiazole and coumarin rings were detected 
at δ = 7.5 ppm and δ = 8.4 ppm, respectively, and the signals 
corresponded to aromatic hydrogens were observed between 
δ = 7.46—8.96 ppm. The 13C-NMR spectroscopic analysis 
also confirmed the structural identity by observing the new 
characteristic type of doublets signals at δ = 16 ppm and 
δ = 63 ppm corresponded for methylene (CH3–CH2–O–P) 
and ethylene (CH3–CH2–O–P), respectively, due to the 
coupling of the carbon atoms with the phosphorus atoms 
(JC–P), and the signals at δ = 16 ppm and δ = 63 ppm cor-
responded to methyl and methylene, respectively, of 
α-aminophosphonates groups, the signal corresponded the 
asymmetric Carbone (*C) was observed at δ = 53, 7 ppm, the 
signals at δ = 159 ppm and δ = 166, 63 ppm relating to cou-
marin carbonyl and thiazole ring, respectively. The 31P-NMR 
spectroscopic analysis was found to give a signal ranging 
between δ = 19.7—20.2 ppm confirming the presence of the 
atom of phosphors for the phosphonates groups.

The structure attribution of proton–carbon of the repre-
sentative compounds was further confirmed by 2D NMR 
(HSQC, HMBC) experiments (400 MHz). The HSQC spec-
tra confirm all the vicinal correlation proton–carbon (1–2). 

And the HMBC spectra indicate and confirm the correla-
tion between proton–carbon (1–3 and 1–4). The elemental 
analysis furthermore confirmed the assigned structures of 
all synthesized compounds.

Biological results

Recently, it is known that many synthetic coumarylthi-
azole derivatives have various pharmacological proper-
ties. Among these properties, they have interesting antimi-
crobial activity [41]. The literature reports reveal that the 
α-aminophosphonates derivatives displayed good antibacte-
rial activity against both Gram‐negative and Gram‐positive 
bacterial strains [42].

We have considered that the synthesized compounds 
might possess certain antimicrobial activities due to a com-
bination of coumarylthiazole and α-aminophosphonates 
moiety in the same scaffold.

All the newly synthesized compounds (IV)a–m have been 
evaluated in vitro for their antibacterial activity against the 
selected strains of Gram-negative and Gram-positive bac-
teria and one fungal strain, using the broth micro-dilution 
method. Dimethyl sulfoxide (DMSO) was used as a negative 
control. For the control test, we have used Imipenem, Cipro-
floxacin, Amikacinekacine as a positive control to compare 
the minimal inhibitory concentration (MIC), the MIC values 
are reported in Tables 3 and 4.

The results clearly showed that all the tested compounds 
had excellent antimicrobial effects against the different bac-
teria strains ranging between 0.125—128 μg/mL compared 
with standard drugs (positive control). The highest activity 
was observed with the compound (IV)e with MIC values 
of 0.125 μg/mL against both Gram-negative and Gram-
positive bacteria strains. In addition, four compounds (IV)
h, (IV)f, (IV)b, and (IV)d also showed excellent activity 
with MIC values ranging between 0.125—64 μg/ML and 
0.125—4 μg/mL against both Gram-negative and Gram-
positive bacteria strain, respectively.

The compound (IV)e exhibited the strongest inhibition 
against Escherichia coli ATCC 25922, Escherichia coli 
ESBL, (Kpc +),(Kpc_), Klebsiella pneumonia Sey Mar-
seille, Serratia marcescens, Salmonella sp, Pseudomonas 
aeruginosa ATCC 27853, Pseudomonas aeruginosa imi-
penem-resistant (VIM-2.1), and Acinetobacter baumanni. 
OXA-23 with MIC values 0.125 μg/mL for Gram-negative 
bacteria strain, and high inhibition against Bacillus cereus, 
Staphylococcus aureus ATCC25900, Staphylococcus aureus 
ATCC25923, and Staphylococcus aureus ATCC 29213 with 
MIC values 0.125 μg/mL for Gram-positive bacteria strain 
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was comparable and even more efficient than the stand-
ard drugs, Imipenem, Ciprofloxacin, and Amikacine. Fur-
thermore, the following compounds (IV)h, (IV)f, (IV)b, 
and (IV)d have exceptional and strong inhibition activity 
against Escherichia coli ATCC 25922, Escherichia coli 
ESBL, Salmonella, Pseudomonas aeruginosa ATCC 27853, 
and Pseudomonas aeruginosa imipenem-resistant (VIM-
2.1) with MIC values 0.125 μg/mL Gram-negative bacte-
ria strain and against Staphylococcus aureus ATCC25923, 
Staphylococcus aureus ATCC 29213  with MIC values 
0.125 μg/mL Gram-positive bacteria strain. So all of these 
compounds can be considered as broad-spectrum potential 
antibacterial agents.

On the other hand, we were observed that the follow-
ing multidrug-resistant bacteria strain Pseudomonas aer-
uginosa imipenem-resistant (VIM-2.2), Acinetobacter bau-
manni (NDM-1), and Acinetobacter baumanni OXA-23 were 
exhibited less resistance against the synthesized compounds 
with MIC ranging between 0.125 and 128 μg/mL. These 
results can confirm effectively the potential inhibition of the 
synthesized compounds against multidrug resistance strains.

The in vitro antifungal activity of all the synthesized 
compounds (IV)a–m was screened against Candida albicans 
strain using the drug Fluconazole as a reference standard, 
four compounds (IV)e, (IV)i, (IV)j, and (IV)l were found 
having good and moderate promising activity with MIC 
values 0.125 μg/mL, the antifungal activity of the other 

compounds was found in the range of 1-128 μg/mL less than 
the drug fluconazole 2 μg/mL, and most of these compounds 
can be therefore considered as potential antifungal agents.

Based on the results of Tables 3 and 4, we were found that 
the synthesized compounds substituted with heterocyclic 
rings (IV)l and (IV)m have excellent and remarkable activ-
ity, the compound (IV)l exhibited a high inhibition against 
Bacillus cereus, Enterococcus faecalis resistant for vanco-
mycin, and Candida albicans with MIC value 0.125 μg/mL. 
On the other hand, the compound (IV)m showed moderate 
and high inhibition against Gram-negative bacteria strain 
Klebsiella pneumoniae Carbapenem-sensible (Kpc-), Ser-
ratia marcescens, and Salmonella sp with MIC value ranging 
between 0.125–0.50 μg/mL.

In this study, we have found that the novel coumarylthi-
azole α-aminophosphonates synthesized compounds have 
moderate activity for antimicrobial pathogen with interesting 
MIC values. A modal MIC around 0.125 μg / mL relatively 
low and much lower than the MIC of antibiotics used in 
medicine: Imipenem, Ciprofloxacin, Amikacine, and Flu-
conazole (Fig. 2) which demonstrated an appreciable utility 
and leave the possibility of increasing the doses in the event 
of resistance provided.

Table 3  Values of MIC (µg/mL) of the synthesized α-aminophosphonates derivatives against the tested Gram-positive bacteria

++: no inhibition (or concentration > 512 μg/mL), –: not applicable
R resistant, MIC minimum inhibitory concentration
a Positive reference

Bacillus cereus Staph.aureus 
ATCC25900

Staph.aureus 
ATCC25923

Staph.aureus 
ATCC 29213

Enterococcus faecalis 
VANCO R

Condida albicans

(IV)a 4  ++  ++ 0.125 4 ++
(IV)b 0.5 4 0.125 0.125 ++ ++
(IV)c 4 0.5/4 1 1 16 1
(IV)d 4 0.125 0.125 0.125 ++ 4
(IV)e 0.125 0.125 0.125 0.125 ++ 0.125
(IV)f 2 ++ 0.125 0.125 0.125 2
(IV)g 32 ++ ++ 0.5 0.125 1
(IV)h 0.5/64 ++ ++ 0.25 0.125 1/64
(IV)i 0.125 8 0.125 ++ 0.125 0.125
(IV)j 0.125 2/128 0.125 ++ 0.125 0.125/16
(IV)k 0.125 4 0.5 128 0.25 0.5
(IV)l 0.125 ++ 16 ++ 0.125 0.125
(IV)m 2/128 ++ 0.5 8 1 128
Imipenema – – – – – –
Ciprofloxacina – – – – – –
Amikacinea – – – – – –
Fluconazolea – – – – – 2
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Structure‒activity relationship analysis

The structure–activity relationship (SAR) of the coumar-
ylthiazole α-aminophosphonates derivatives presented 
from data of Tables 3 and 4: the best activity among all 
the newly synthesized compounds was exhibited with the 
bromine substituent derivative at the ortho position of the 
phenyl ring (IV)e against both antibacterial and antifun-
gal with MIC values 0.125 μg/mL, the different substitu-
tions at the phenyl ring were showed a high relationship 
increasing antibacterial activity, the electron-donating 
groups at ortho  and para  positions: 4-hydroxy-3-meth-
oxy > 2-hydroxy > 4-methoxy increase inhibitory activi-
ties with MIC values ranging between 0.125–128 μg/mL 
against microbial strains. Moreover, several compounds 
with electron‐withdrawing groups at ortho and para posi-
tions: 2-Bromo > 4-Chloro were showed strong antimicrobial 
activity with MIC modal of 0.125 μg/mL, the presence of 
nitro group (electron‐withdrawing group) at meta position 
(IV)b showed high inhibitory activity against Gram-negative 
bacteria with MIC values ranging between 0.125–32 μg/mL. 
The heterocyclic substitutions (IV)l and (IV)m (pyrrole and 
chromene, respectively) showed interesting antibacterial and 
antifungal activities, in particular, the pyrrole derivative 
(IV)l resulted more active on some Gram-positive bacteria 
and Candida albicans, while the chromene derivative (IV)m 
showed better activity against some Gram-negative bacteria.

According to the SAR study, it is clear that the inhibitory 
effect is directly related to the type of the substituted group 
on the phenyl ring. Increasing antimicrobial activity depends 
on the presence of the α-aminophosphonates moiety and is 
required for a scaffold to be effective against both references 
and MDR strains.

Conclusion

We reported herein an efficient synthesis of thirteen coumar-
ylthiazole α-aminophosphonates under ultrasound irradiation. 
All these compounds have been characterized by spectral anal-
yses and tested for their potential antibacterial activity against 
Gram-positive and Gram-negative bacteria and antifungal 
activity against Candida Albicans by comparison with standard 
drugs, Imipenem, Ciprofloxacin, Amikacine, and fluconazole. 
We have found that the highest activity was observed by com-
pounds (IV)e with MIC values of 0.125 μg/mL followed by 
compounds (IV)h, (IV)f, (IV)b, and (IV)d, respectively, against 
antimicrobial strain; thees results revealed that the inhibitory 
activity of the synthesized compounds could also be affected 
by the type of substituent on the phenyl ring. Electron-donat-
ing substituents groups especially in ortho and para positions 
showed quite better activities than the electron‐withdrawing 
groups. All the synthesized compounds showed moderate and 
interesting antimicrobial activities and can use as new potent 
antimicrobial drugs for therapeutic use.

Experimental section

General

Melting points (m.p) of all the synthesized compounds were 
determined by the Buchi Melting Point B-545 apparatus and 
the values are uncorrected. Sonication was performed in a 
FUNGILAB ultrasonic bath with a frequency of 40 kHz and 
output power of 250 W. IR spectra were recorded on a Perki-
nElmer FT-600 spectrometer. 1H, 13C, 31 P spectra were 
recorded on a Bruker spectrometer 400 MHz, 101 MHz, and 
162 MHz, respectively, in δ ppm using TMS as the stand-
ard. Elemental analysis (C, H, and N) was performed on a 

Fig. 2  Comparison of MIC 
values of compounds (IV)a-m 
with Imipenem, Ciprofloxacin, 
Amikacine, and Fluconazole as 
references.
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PerkinElmer 2400 CHN elemental analyzer model 1106. 
Coupling constants J are in Hertz, Multiplicity is indicated 
by one of the following: s (singlet), d (doublet), t (triplet), q 
(quartet), dd (doublet of doublet), ddd (doublet of a doublet 
of doublet),m (multiplet), and chemical shifts are given in 
ppm and calibrated with DMSO‐d6. All reactions were moni-
tored by thin‐layer chromatography with silica gel Merck 60 
F254-percolated aluminum plates (0.25 mm). The visualiza-
tion was performed with a UV light at 254 nm and ninhydrin 
solution as developing agents. The synthetic starting material, 
reagents, and solvents were purchased from Merck, Sigma-
Aldrich, and Fluka.

Synthesis of 3‑acetyl‑2H‑chromen‑2‑one (I)

A mixture of salicylaldehyde (1 mmol) and ethyl acetoac-
etate (1.2 mmol) was cooled and maintained at 0–5 °C; few 
drops of piperidine were added dropwise with continuous 
stirring. The reaction mixture was left overnight, resulting 
in the formation of a yellow-colored solid which was washed 
by ether and purification by recrystallization (EtOH/CHCl3) 
1:3 mixture, gave 3-acetylcoumarin (I) as fine yellow nee-
dles in good yields. Isolation and spectral data of this com-
pound were reported in the literature [43, 44].

Synthesis of 3‑(2‑bromoacetyl)‑2H‑chromen‑2‑one 
(II)

3-Acetylcoumarin (I) (10 mmol) was dissolved in alco-
hol-free chloroform (20 mL) and a solution of bromine 
(10 mmol) in chloroform (5 mL) was added dropwise from a 
dropping funnel with constant stirring at 15 min, the mixture 
was heated for 20 min on a water-bath to expel most of the 
hydrogen bromide, the solid obtained was washed by ether, 
purification by recrystallization from glacial acetic acid 
gave 3-(bromoacetyl)-coumarin (II) as white shiny needles 
in good yields. Isolation and spectral data of this compound 
were reported in the literature [45]

Synthesis of 3‑(2‑amino‑1,3‑thiazol‑4‑yl)coumarin 
(III)

3-(2-amino-1,3-thiazol-4-yl)coumarin (III) was pre-
pared by a mixture of Thiourea (5 mmol) and a solution of 
3-(bromoacetyl)-coumarin (II) (5 mmol) in boiling ethanol 
(20 mL). The mixture was refluxed for 1 h, then cooled and 
neutralized with aqueous ammonia. The solid obtained was 
filtered off, washed with ethanol without recrystallization or 
other purification. The product was obtained in 90% yield [46].

3-(2-amino-1,3-thiazol-4-yl)coumarin:  C12H8N2O2S; 
MW = 244.03; Yellow powder. Yield: 90%; 1H NMR 
(400 MHz, DMSO-d6) δ 8.51 (s, 1H), 7.82 (d, J = 7.7 Hz, 
1H), 7.61 (ddd, J = 8.9, 7.3, 1.7 Hz, 1H), 7.51 (s, 1H), 7.43 

(d, J = 8.3 Hz, 1H), 7.37 (td, J = 7.5, 1.1 Hz, 1H), 7.19 (s, 
2H). 13C NMR (101 MHz, DMSO-d6) δ 167.93, 159.21, 
152.66, 138.60, 131.94, 131.47, 129.14, 125.14, 120.87, 
119.75, 116.71, 116.28, 109.18.

Synthesis of triethyl ammonium acetate 
(TEAA)

Triethylammonium acetate (TEAA) has been easily prepared 
from the reaction of triethylamine and acetic acid according to 
the reported method [47]. The synthesis of TEAA was carried 
out in a 250-mL round-bottomed flask, which was immersed 
in a water-bath and fitted with a reflux condenser. (10 mmol) 
of Acetic acid (10 mmol) was added dropwise with constant 
stirring at 70 °C for 1 h. The mixture was heated at 80 °C with 
stirring for 2 h to ensure that the reaction had proceeded to 
completion. The TEAA was found in 98% yield.

General procedure for the synthesis 
of α‑aminophosphonate‑substituted 
coumarylthiazole (IV)a–m

In a 10-mL round-bottom flask taken a mixture of aldehyde 
(1 mmol) and 3-(2-amino-1,3-thiazol-4-yl)coumarin (III) 
(1 mmol) and TEAA (1 mL) as a catalyst at room tempera-
ture and then triethyl phosphite (1 mmol) was added. Then 
reaction mixture was exposed to ultrasound irradiation (US) 
for the appropriate time. After completion of the reaction, 
as indicated by TLC silica gel; dichloromethane: methanol 
(9.5:0.5). 5 mL of water was added to the mixture. The ionic 
liquid was dissolved in water and filtered for separation of 
the product. The separated product was washed with water. 
The solid product was purified by recrystallization in etha-
nol. Compounds (IV)a–m were obtained with 65–92% yield.

Diethyl((4‑nitrophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)a Orange powder. 
Recrystallized from EtOH. Yield: 83%; mp: 204–205.7 °C; 
IR (KBr,cm−1): 3383.31, 1739.41, 1520.65, 1236.76; 1H-
NMR (400 MHz, DMSO-d6) δ 8.96 (dd, J = 9.4, 4.4 Hz, 1H), 
8.66 (s, 1H), 8.29 (d, J = 8.5 Hz, 2H), 7.88 (ddd, J = 7.8, 4.5, 
1.8 Hz, 3H), 7.67 – 7.60 (m, 1H), 7.60 (s, 1H), 7.46 – 7.36 
(m, 2H), 5.91 (dd, J = 22.7, 9.4 Hz, 1H), 4.20 – 3.86 (m, 
4H), 1.21 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H). 13C 
NMR (101 MHz, DMSO-d6) δ = 166.38 (d, JC–P = 11.4 Hz), 
159.17, 152.70, 147.47 (d, JC–P = 3.2 Hz), 144.85, 143.09, 
139.14, 131.99, 129.92 (d, JC–P = 5.4 Hz), 129.16, 125.14, 
123.81 (d, JC–P = 2.0 Hz), 120.72, 119.81, 116.31, 110.39, 
63.48 (d, JC–P = 6.9 Hz), 63.23 (d, JC–P = 6.7 Hz), 55.79, 
54.28, 16.72 (d, JC–P = 5.3 Hz), 16.53 (d, JC–P = 5.5 Hz). 
31P NMR (162 MHz, DMSO-d6) δ 20.05. Anal. Calcd. for 
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 C23H22N3O7PS (%): C, 53.59; H, 4.30; N, 8.15. Found: C, 
54.09; H, 4.12; N, 8.36.

Diethyl((3‑nitrophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)b Yellow powder. 
Recrystallized from EtOH. Yield: 75%; mp: 221.3–222 °C; 
IR (KBr,cm−1): 3430.00, 1723.05, 1530.30, 1220.00; 1H-
NMR (400 MHz, DMSO-d6) δ 8.98 (dd, J = 9.5, 4.2 Hz, 
1H), 8.71 (s, 1H), 8.58 – 8.52 (m, 1H), 8.19 (d, J = 8.2 Hz, 
1H), 8.08 (d, J = 7.7 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.73 
(t, J = 8.0 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.60 (s, 1H), 
7.46 – 7.37 (m, 2H), 5.94 (dd, J = 22.1, 9.4 Hz, 1H), 4.13 
(ddd, J = 13.5, 9.5, 7.2 Hz, 2H), 4.07 – 3.88 (m, 2H), 1.21 
(t, J = 7.0  Hz, 3H), 1.11 (t, J = 7.0  Hz, 3H). 13C NMR 
(101  MHz, DMSO-d6) δ = 166.35 (d, JC–P = 11.3  Hz), 
159.17, 152.72, 148.18 (d, JC–P = 2.3 Hz), 143.13, 139.31 (d, 
JC–P = 24.2 Hz), 135.45 (d, JC–P = 5.5 Hz), 131.98, 130.19, 
129.07, 125.15, 123.39 (d, JC–P = 5.5 Hz), 123.16, 120.74, 
119.85, 116.33, 110.39, 63.44 (d, JC–P = 6.8 Hz), 63.19 (d, 
JC–P = 6.7 Hz), 55.40, 53.87, 16.69 (d, JC–P = 5.4 Hz), 16.51 
(d, JC–P = 5.6 Hz). 31P NMR (162 MHz, DMSO-d6) δ 20.33. 
Anal. Calcd. for  C23H22N3O7PS (%): C, 53.59; H, 4.30; N, 
8.15. Found: C, 53.10; H, 4.54; N, 7.87.

Diethyl((2‑nitrophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)c Brown powder. 
Recrystallized from EtOH. Yield: 82%; mp: 243.4–244.2 °C; 
IR (KBr,cm−1): 3434.02, 1723.51, 1536.00, 1218.00; 1H-
NMR (400 MHz, DMSO-d6) δ 8.93 (dd, J = 9.1, 5.4 Hz, 1H), 
8.36 (s, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.0 Hz, 
1H), 7.79 (t, J = 7.6 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.58 
(d, J = 7.2 Hz, 3H), 7.39 (dt, J = 7.5, 3.3 Hz, 2H), 6.51 (dd, 
J = 23.6, 9.0 Hz, 1H), 4.14 (p, J = 7.4 Hz, 2H), 4.06 – 3.83 
(m, 2H), 1.25 (t, J = 7.0 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H). 13C 
NMR (101 MHz, DMSO-d6) δ = 166.53 (d, JC–P = 13.7 Hz), 
159.04, 152.69, 149.70 (d, JC–P = 7.0 Hz), 142.95, 138.57, 
134.10 (d, JC–P = 2.4  Hz), 132.14 (d, JC–P = 22.5  Hz), 
130.03 (d, JC–P = 4.0 Hz), 129.59 (d, JC–P = 2.5 Hz), 128.67, 
125.20 (d, JC–P = 16.2 Hz), 120.69, 119.60, 116.38, 110.94, 
63.63 (d, JC–P = 6.9 Hz), 63.29 (d, JC–P = 6.9 Hz), 50.65, 
49.09, 16.71 (d, JC–P = 5.1 Hz), 16.40 (d, JC–P = 5.3 Hz). 
31P NMR (162 MHz, DMSO-d6) δ 19.79. Anal. Calcd. for 
 C23H22N3O7PS (%): C, 53.59; H, 4.30; N, 8.15. Found: C, 
53.27; H, 4.46; N, 7.92.

Diethyl((2‑hydroxyphenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)
thiazol‑2‑yl)amino)methyl)phosphonate (IV)d Yel-
low powder. Recrystallized from EtOH. Yield: 87%; mp: 
184–188 °C; IR (KBr,cm−1): 3480.00, 3246.02, 1705.08, 
1543.04, 1236.04; 1H-NMR (400 MHz, DMSO-d6) δ 9.86 
(s, 1H), 8.62 (dd, J = 9.6, 3.5 Hz, 1H), 8.55 (s, 1H), 7.84 
(dd, J = 7.7, 1.5 Hz, 1H), 7.62 (ddd, J = 8.6, 7.2, 1.6 Hz, 
1H), 7.55 (s, 1H), 7.51 – 7.33 (m, 3H), 7.16 – 7.05 (m, 

1H), 6.90 – 6.72 (m, 2H), 6.06 (dd, J = 21.1, 9.6 Hz, 1H), 
4.08 (dqd, J = 17.1, 7.1, 3.4 Hz, 2H), 3.99 – 3.70 (m, 2H), 
1.21 (t, J = 7.0 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H). 13C NMR 
(101 MHz, DMSO-d6) δ = 159.17, 155.57 (d, JC–P = 6.6 Hz), 
152.68, 143.14, 138.68, 131.96, 129.45 (d, JC–P = 4.0 Hz), 
129.08, 125.16, 123.25, 121.02, 119.73, 119.32, 116.36, 
115.45, 109.97, 62.85 (d, JC–P = 4.9  Hz), 62.78 (d, 
JC–P = 5.1 Hz), 49.32, 47.75, 46.15, 16.76 (d, JC–P = 5.4 Hz), 
16.50 (d, JC–P = 5.5 Hz). 31P NMR (162 MHz, DMSO-d6) 
δ 22.21. Anal. Calcd. for  C23H23N2O6PS (%): C, 56.79; H, 
4.77; N, 5.76 Found: C, 56.68; H, 4.69; N, 5.65.

Diethyl((2‑bromophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)e Yellow powder. 
Recrystallized from EtOH. Yield: 65%; mp: 262–263 °C; 
IR (KBr,cm−1): 3429.48, 1722.41, 1543.33, 1233.39 1H 
NMR (400 MHz, DMSO-d6) δ = 8.96 (dd, J = 9.1, 5.1, 1H), 
8.68 (s, 1H), 7.77 (d, J = 7.7, 1H), 7.70 – 7.57 (m, 3H), 
7.58 (d, J = 11.2, 1H), 7.47 – 7.35 (m, 3H), 7.23 (t, J = 7.7, 
1H), 6.07 (dd, J = 22.3, 9.1, 1H), 4.20 – 4.08 (m, 2H), 3.91 
(dp, J = 10.1, 7.2, 1H), 3.82 – 3.69 (m, 1H), 1.25 (t, J = 7.0, 
3H), 1.05 (t, J = 7.0, 3H). 13C NMR (101 MHz, DMSO-
d6) δ = 166.40 (d, JC–P = 14.0 Hz), 159.10, 152.71, 143.01, 
138.91, 136.84, 132.91, 132.05, 130.12 (t, JC–P = 3.5 Hz), 
128.94, 128.31 (d, JC–P 2.9 Hz), 125.19 (d, JC–P = 12.5 Hz), 
120.86, 119.71, 116.37, 110.64, 63.33 (d, JC–P = 6.8 Hz), 
63.15 (d, JC–P = 6.8  Hz), 55.43, 53.87, 16.78 (d, 
JC–P = 5.4 Hz), 16.45 (d, JC–P = 5.4 Hz). 31P NMR (162 MHz, 
DMSO) δ 20.55. Anal. Calcd. for  C23H22BrN2O5PS (%): C, 
50.28; H, 4.04; N, 5.10 Found: C, 50.37; H, 4.11; N, 5.17.

D i e t h y l ( ( 4 ‑ h y d r o x y ‑ 3 ‑ m e t h o x y p h e n y l )
((5‑(2‑oxo‑2H‑chromen‑3‑yl)thiazol‑2‑yl)amino)methyl)phos‑
phonate (IV)f Yellow powder. Recrystallized from EtOH. 
Yield: 73%; mp: 212–213 °C; IR (KBr,cm−1): 3493.25, 
3237.42, 1691.05, 1542.19, 1215.78; 1H-NMR (400 MHz, 
DMSO-d6) δ 8.98 (s, 1H), 8.71 (s, 1H), 8.64 (dd, J = 9.7, 
3.2 Hz, 1H), 7.90 (dd, J = 7.9, 1.5 Hz, 1H), 7.61 (ddd, 
J = 8.7, 7.3, 1.6 Hz, 1H), 7.57 (s, 1H), 7.46 – 7.35 (m, 2H), 
7.22 (t, J = 1.9 Hz, 1H), 6.99 (dt, J = 8.2, 2.1 Hz, 1H), 6.77 
(d, J = 8.1 Hz, 1H), 5.58 (dd, J = 21.0, 9.7 Hz, 1H), 4.17 
– 3.99 (m, 2H), 3.98 – 3.73 (m, 5H), 1.19 (t, J = 7.0 Hz, 
3H), 1.08 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-
d6) δ = 166.67 (d, JC–P = 11.4 Hz), 159.23, 152.70, 147.71, 
146.67, 143.18, 138.96, 131.92, 129.14, 127.28, 125.15, 
121.54 (d, JC–P = 6.2 Hz), 120.85, 119.89, 116.30, 115.57, 
113.49 (d, JC–P = 5.5 Hz), 109.89, 62.90 (d, JC–P = 4.5 Hz), 
62.83 (d, JC–P = 3.9  Hz), 56.21, 55.76, 54.21, 16.77 
(d, JC–P = 5.4  Hz), 16.58 (d, JC–P = 5.7  Hz). 31P NMR 
(162 MHz, DMSO-d6) δ 21.88 (d, J = 2.9 Hz). Anal. Calcd. 
for  C24H25N2O7PS (%): C, 55.81; H, 4.88; N, 5.42 Found: 
C, 55.74; H, 4.72; N, 5.34.
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Diethyl((3‑bromophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thi‑
azol‑2‑yl)amino)methyl)phosphonate (IV)g White solid. 
Recrystallized from EtOH. Yield: 90%; mp: 215.4–216.6 °C; 
IR (KBr,cm−1): 3427.75, 1723.27, 1540.45, 1222.12; 1H 
NMR (400 MHz, DMSO-d6) δ = 8.80 (dd, J = 9.6, 4.0, 1H), 
8.68 (s, 1H), 7.98 – 7.73 (m, 2H), 7.69 – 7.56 (m, 3H), 
7.51 (d, J = 8.1, 1H), 7.39 (dt, J = 21.8, 7.8, 3H), 5.75 (dd, 
J = 21.9, 9.6, 1H), 4.19 – 3.82 (m, 5H), 1.15 (dt, J = 38.5, 
7.1, 6H). 13C NMR (101 MHz, DMSO-d6) δ = 166.43 (d, 
JC–P = 11.3 Hz), 159.19, 152.72, 143.14, 139.61, 139.13, 
131.97, 131.50 (d, JC–P = 5.5 Hz), 130.99 (d, JC–P = 2.7 Hz), 
130.77, 129.13, 127.89 (d, JC–P = 5.7 Hz), 125.15, 121.91 
(d, JC–P = 2.4 Hz), 120.78, 119.86, 116.32, 110.22, 63.27 (d, 
JC–P = 7.0 Hz), 63.07 (d, JC–P = 6.8 Hz), 55.47, 53.95, 16.60 
(dd, JC–P = 20.9 Hz, 5.4 Hz). 31P NMR (162 MHz, DMSO) 
δ 20.76. Anal. Calcd. for  C23H22BrN2O5PS (%): C, 50.28; H, 
4.04; N, 5.10 Found: C, 50.17; H, 3.91; N, 5.03.

Diethyl((4‑chlorophenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)h White powder. 
Recrystallized from EtOH. Yield: 75%; mp: 193.5–194.4 °C; 
IR (KBr,cm−1): 3491.91, 1720.44, 1539.00, 1234.45; 1H-
NMR (400 MHz, DMSO-d6) δ 8.79 (dd, J = 9.6, 3.9 Hz, 
1H), 8.66 (s, 1H), 7.88 (dd, J = 7.8, 1.6 Hz, 1H), 7.66 – 
7.57 (m, 3H), 7.58 (s, 1H), 7.51 – 7.36 (m, 3H), 5.73 (dd, 
J = 22.0, 9.6 Hz, 1H), 4.15 – 4.00 (m, 2H), 4.00 – 3.82 (m, 
2H), 1.19 (t, J = 7.0 Hz, 3H), 1.10 (t, J = 7.0 Hz, 3H). 13C 
NMR (101 MHz, DMSO-d6) δ = 166.51 (d, JC–P = 11.5 Hz), 
164.76, 159.20, 152.70, 143.13, 139.06, 135.94, 132.85 (d, 
JC–P = 3.2 Hz), 131.96, 131.82, 130.60 (d, JC–P = 5.8 Hz), 
129.80, 129.19, 128.65 (d, JC–P = 2.1  Hz), 125.22 (d, 
JC–P = 19.3 Hz), 120.78, 119.84, 116.30, 110.16, 63.22 
(d, JC–P = 6.9 Hz), 63.02 (d, JC–P = 6.8 Hz), 55.42, 53.89, 
16.73 (d, JC–P = 5.4  Hz), 16.53 (d, JC–P = 5.5  Hz).31P 
NMR (162  MHz, DMSO-d6) δ 20.92. Anal. Calcd. for 
 C23H22ClN2O5PS (%): C, 54.71; H, 4.39; N, 5.55 Found: C, 
54.79; H, 4.48; N, 5.61.

Diethyl(((5‑(2‑oxo‑2H‑chromen‑3‑yl)thiazol‑2‑yl)amino)
(3‑methoxyphenyl)methyl)phosphonate (IV)i Yellow powder. 
Recrystallized from EtOH. Yield: 69%; mp: 228.9–229 °C; 
IR (KBr,cm−1): 3419.59, 1719.13, 1539.12, 1247.39; 1H 
NMR (400 MHz, DMSO-d6) δ = 8.75 (s, 1H), 8.70 (dd, 
J = 9.8, 3.3, 1H), 7.83 – 7.91 (m, 1H), 7.56 – 7.66 (m, 
2H), 7.35 – 7.46 (m, 2H), 6.97 (d, J = 1.9, 2H), 5.64 (dd, 
J = 21.2, 9.7, 1H), 3.81 – 4.18 (m, 4H), 3.31 (s, 3H), 1.21 
(t, J = 7.0, 3H), 1.10 (t, J = 7.0, 3H). 13C NMR (101 MHz, 
DMSO-d6) δ = 166.61 (d, JC–P = 11.3 Hz), 159.21, 153.04 
(d, JC–P = 2.0  Hz), 152.72, 143.18, 139.06, 132.07 (d, 
JC–P = 25.4 Hz), 129.04, 125.18, 120.83, 119.91, 116.33, 
110.03, 106.65 (d, JC–P = 5.9 Hz), 62.98 (t, JC–P = 6.5 Hz), 
60.46 (d, JC–P = 1.6 Hz), 56.48, 16.78 (d, JC–P = 5.3 Hz), 
16.56 (d, JC–P = 5.6 Hz). 31P NMR (162 MHz, DMSO) δ 

21.39. Anal. Calcd. for  C24H25N2O6PS (%): C, 57.59; H, 
5.03; N, 5.60 Found: C, 57.48; H, 5.04; N, 5.52.

Diethyl((4‑methoxyphenyl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thi‑
azol‑2‑yl)amino)methyl)phosphonate (IV)j Yellow powder. 
Recrystallized from EtOH. Yield: 76%; mp: 236.8–237 °C; 
IR (KBr,cm−1): 3418.48, 1716.49, 1543.33, 1233.39; 1H-
NMR (400 MHz, DMSO-d6) δ 8.72 (dd, J = 9.8, 3.4 Hz, 
1H), 8.69 (s, 1H), 7.95 – 7.88 (m, 1H), 7.61 (ddd, J = 8.6, 
7.3, 1.6 Hz, 1H), 7.57 (s, 1H), 7.55 – 7.50 (m, 2H), 7.46 – 
7.35 (m, 2H), 6.95 (d, J = 8.4 Hz, 2H), 5.65 (dd, J = 21.3, 
9.7  Hz, 1H), 4.16 – 3.99 (m, 2H), 3.95 (ddt, J = 17.4, 
14.3, 6.7 Hz, 1H), 3.89 – 3.76 (m, 1H), 3.74 (s, 3H), 1.19 
(t, J = 7.0  Hz, 3H), 1.08 (t, J = 7.0  Hz, 3H). 13C NMR 
(101  MHz, DMSO-d6) δ = 166.63 (d, JC–P = 11.4  Hz), 
159.27, 159.24, 159.22, 152.69, 143.15, 138.97, 131.93, 
130.06 (d, JC–P = 5.9 Hz), 129.23, 125.12, 120.81, 119.86, 
116.29, 114.06, 109.96, 62.96 (d, JC–P = 6.9 Hz), 62.83 (d, 
JC–P = 6.8 Hz), 55.54, 55.31, 53.77, 16.76 (d, JC–P = 5.2 Hz), 
16.56 (d, JC–P = 5.5 Hz). 31P NMR (162 MHz, DMSO-d6) 
δ 21.78. Anal. Calcd. for  C24H25N2O6PS (%): C, 57.59; H, 
5.03; N, 5.60 Found: C, 57.65; H, 5.13; N, 5.67.

D i e t h y l ( ( 4 ‑ ( d i m e t h y l a m i n o ) p h e n y l )
((5‑(2‑oxo‑2H‑chromen‑3‑yl)thiazol‑2‑yl)amino)methyl)
phosphonate (IV)k Brown powder. Recrystallized from 
EtOH. Yield: 65%; mp: 207.1–208.3 °C; IR (KBr,cm−1): 
3422.00, 1723.21, 1541.27, 1216.59; 1H NMR (400 MHz, 
DMSO-d6) δ = 8.67 (s, 1H), 8.60 (dd, J = 9.8, 3.2, 1H), 7.96 
– 7.89 (m, 1H), 7.66 – 7.53 (m, 2H), 7.46 – 7.35 (m, 4H), 
6.71 (d, J = 8.4, 2H), 5.55 (dd, J = 21.1, 9.7, 1H), 4.06 (ddd, 
J = 16.6, 9.7, 6.9, 2H), 3.93 (dt, J = 10.2, 7.1, 1H), 3.87 – 
3.72 (m, 1H), 3.33 (s, 1H), 2.87 (s, 6H), 1.18 (t, J = 7.0, 
3H), 1.08 (t, J = 7.0, 3H). 13C NMR (101 MHz, DMSO-
d6) δ = 166.74 (d, JC–P = 11.5 Hz), 159.23, 152.68, 150.39, 
143.15, 138.88, 131.92, 129.58 (d, JC–P = 6.0 Hz), 129.26, 
125.12, 123.64, 120.86, 119.87, 116.28, 112.37, 109.82, 
62.77 (dd, JC–P = 9.7 Hz, 6.8 Hz), 55.44, 53.88, 16.78 (d, 
JC–P = 5.3 Hz), 16.60 (d, JC–P = 5.5 Hz). 31P NMR (162 MHz, 
DMSO) δ 22.12. Anal. Calcd. for  C25H28N3O5PS (%): C, 
58.47; H, 5.50; N, 8.18 Found: 58.54; H, 5.59; N, 8.25.

Diethyl(((5‑(2‑oxo‑2H‑chromen‑3‑yl)thiazol‑2‑yl)amino)
(1H‑pyrrol‑2‑yl)methyl)phosphonate (IV)l Red solid. Recrys-
tallized from EtOH. Yield: 91%; mp: 210.5–211.4  °C; 
IR (KBr,cm−1): 3432.87, 1723.99, 1537.69, 1231.70; 
1H NMR (400 MHz, DMSO-d6) δ = 10.75 (s, 1H), 8.71 
(s, 1H), 8.40 (dd, J = 9.5, 2.0, 1H), 7.85 (dd, J = 7.7, 1.6, 
1H), 7.62 (ddd, J = 8.7, 7.3, 1.6, 1H), 7.58 (s, 1H), 7.47 
– 7.34 (m, 2H), 6.72 (dq, J = 2.6, 1.3, 1H), 6.21 (dq, 
J = 4.0, 2.1, 1H), 6.01 (q, J = 2.8, 1H), 5.72 (dd, J = 20.5, 
9.5, 1H), 4.16 – 3.75 (m, 3H), 1.18 (t, J = 7.0, 3H), 1.08 
(t, J = 7.1, 3H). 13C NMR (101 MHz, DMSO-d6) δ 166.72 
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(d, JC–P = 9.4 Hz), 159.23, 152.70, 143.15, 138.89, 131.94, 
129.02, 125.80 (d, JC–P = 2.5 Hz), 125.20, 120.88, 119.85, 
118.10 (d, JC–P = 2.1 Hz), 116.35, 109.92, 108.17, 107.78 (d, 
JC–P = 4.9 Hz), 62.95 (d, JC–P = 6.8 Hz), 50.19, 48.59, 16.74 
(d, JC–P = 5.3 Hz), 16.57 (d, J = 5.5 Hz). 31P NMR (162 MHz, 
DMSO-d6) δ 20.65. Anal. Calcd. for  C21H22N3O5PS (%): C, 
54.90; H, 4.83; N, 9.15 Found: C, 54.79; H, 4.75; N, 9.09.

Diethyl((4H‑chromen‑3‑yl)((5‑(2‑oxo‑2H‑chromen‑3‑yl)thia‑
zol‑2‑yl)amino)methyl)phosphonate (IV)m Dark brown solid. 
Recrystallized from EtOH. Yield: 92%; mp: 213.1–214.2 °C; 
IR (KBr,cm−1): 3450.00, 1722.74, 1539.01, 1218.00; 1H 
NMR (400 MHz, DMSO-d6) δ = 8.57 – 8.49 (m, 3H), 8.19 
(dd, J = 8.0, 1.7, 1H), 7.82 (tdd, J = 8.6, 7.3, 1.7, 2H), 7.67 
(dd, J = 8.6, 1.0, 1H), 7.65 – 7.57 (m, 2H), 7.54 (ddd, J = 8.1, 
7.1, 1.1, 1H), 7.46 – 7.35 (m, 2H), 5.91 (dd, J = 20.5, 9.2, 
1H), 4.26 – 3.96 (m, 4H), 1.24 (t, J = 7.0, 3H), 1.15 (t, 
J = 7.0, 3H). 13C NMR (101 MHz, DMSO-d6) δ = 175.00 
(d, JC–P = 4.5 Hz), 166.45 (d, JC–P = 10.6 Hz), 159.13, 156.09 
(d, JC–P = 7.1 Hz), 152.69, 143.22, 138.73, 135.01, 132.02, 
128.95, 126.40, 125.27, 123.36, 120.97 (d, JC–P = 8.1 Hz), 
119.70, 119.02, 116.37, 63.44 (d, JC–P = 6.8 Hz), 63.10 (d, 
JC–P = 6.9 Hz), 46.78, 45.19, 16.73 (d, JC–P = 5.4 Hz), 16.61 
(d, JC–P = 5.5 Hz). 31P NMR (162 MHz, DMSO) δ 21.00. 
Anal. Calcd. for  C26H25N2O6PS (%): C, 59.54; H, 4.80; N, 
5.34 Found: C, 59.62; H, 4.87; N, 5.41.

Pharmacological/biological assays

Antimicrobial activity of all pure compounds was screened 
for in vitro antibacterial activity in terms of MIC values 
against five Gram-positive bacteria: Bacillus cereus, Staph-
ylococcus aureus ATCC25900, Staphylococcus aureus 
ATCC25923, Staphylococcus aureus ATCC 29213, Ente-
rococcus faecalis resistant for vancomycine, and thirteen 
Gram-negative bacteria: Escherichia coli ATCC 25922, 
Escherichia coli ESBL (enlarged spectre β-lactamase), 
Escherichia coli resistant for ciprofloxacine, Klebsiella 
pneumoniae Carbapenem-resistant (Kpc +), Klebsiella 
pneumoniae Carbapenem-sensible (Kpc-), Klebsiella pneu-
moniae Sey Marseille, Serratia marcescens, Salmonella 
sp, Pseudomonas aeruginosa ATCC 27853, Pseudomonas 
aeruginosa imipenem-resistant (VIM-2.1), Pseudomonas 
aeruginosa imipenem-resistant (VIM-2.2), Acinetobacter 
baumanni (NDM-1), Acinetobacter baumanni. OXA-23 
and a fungal strain Candida albicans. All of them were iso-
lated from patients hospitalized in the various departments 
at Annaba hospital-Algeria. Their identification and suscep-
tibility profile is reported by Toumi et al. [48] and Meliani 
et al. [49]. Four standard drugs Imipenem, Ciprofloxacin, 
Amikacine, and fluconazole were used as positive controls 
while DMSO was used as a negative control in this study, the 
minimum inhibition concentration (MIC) of the compounds 

was determined by broth micro-dilution method used DMSO 
in μg/mL [50]. And the microbial suspensions were prepared 
in Muller-Hinton broth from test organisms sub-cultured on 
nutrient agar and incubated at 37 °C for24 h.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10242-2.
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