

0040-4020(95)01086-6

Synthesis of Bicyclic Guanidines from Pyrrolidin-2-one

Saskia Louwrier, Antonin Tuynman and Henk Hiemstra*

Amsterdam Institute of Molecular Studies, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

Abstract: The syntheses of three bicyclic guanidines as model compounds for the guanidine alkaloid ptilomycalin A are described. The guanidines are prepared from pyrrolidin-2-one via an N-acyliminium ion coupling reaction with silyl enol ethers and a direct guanylation with bis-Boc-thiourea and HgCl₂ as the key steps.

INTRODUCTION

The recent upsurge of interest in guanidine alkaloids¹ renders molecules containing a guanidine moiety important targets for the organic synthetic chemist. The guanidine functional group is a key feature in many biologically active compounds², due to hydrogen bond mediated interaction with phosphate- and carboxylatecontaining molecules³. Several of the guanidine alkaloids recently isolated have been shown to possess interesting biological activities¹. The most remarkable alkaloid ptilomycalin A⁴ was first reported in 1989 after its isolation from the Caribbean sponge *Ptilocaulus spiculifer* and from a Red Sea sponge of *Hemimycale* sp, and was shown to exhibit cytotoxic, antiviral and antifungal activities^{4,5}. A number of different approaches have been reported for the synthesis of the pentacyclic guanidine moiety of ptilomycalin A⁶. Recently, the first total synthesis of this natural product was achieved by Overman et al^{6a}.

In connection with our research towards the total synthesis of ptilomycalin A the synthesis of bicyclic guanidines was investigated. Our retrosynthetic analysis of the pentacyclic core of ptilomycalin A (1) is outlined in Scheme 1. The 2,5-disubstituted pyrrolidine 2 was deemed a plausible precursor of the pentacyclic guanidine 1, and was envisaged to arise from the monosubstituted lactam 3. Studies on the synthesis of enantiopure 3 are described in a separate paper⁷. This article presents model studies for the guanylation of 2. More specifically, the synthesis of a number of 2-substituted pyrrolidines of type 4 are described as well as their *N*-functionalization and cyclization to bicyclic guanidines of type 5 (Scheme 2).

Scheme 1. Retrosynthetic analysis.

Scheme 2. Synthetic strategy

RESULTS AND DISCUSSION

Synthesis of C-2 substituted pyrrolidines

Three different 2-substituted pyrrolidines 9-11 (Scheme 3) were prepared in racemic form from benzyl carbamate 6. Chemoselective reduction of the ring carbonyl of 6 was performed with 2 equiv of DIBAL-H in dichloromethane⁸ at low temperature to give the alcohol 7 as a sensitive oil. Treatment of 7 with trimethyl orthoformate in methanol in the presence of a catalytic amount of PPTS gave the *N*-acyliminium ion precursor 8 in good yield.

Table 1 shows the results of the Lewis acid-induced coupling reactions of **8** with three different silyl enol ethers, producing 2-substituted pyrrolidines in high yield. The results of entries 2 and 3 compare well with the work of Shono and co-workers^{9,10}, who reported the coupling of the corresponding methyl carbamate of **8** with these silyl enol ethers.

entry	silyl enol ether	product	yield
1	O OTMS	CO_2Me BnO ₂ C O 9	100%
2			90%
3	отмз	N CO ₂ Bn 11	100%

Table 1 Coupling Reactions of 8 with Silyl Enol Ethers.

Reagents and conditions: silyl enol ether (1.1 equiv), TMSOTf (1.1 equiv), CH₂Cl₂, -78 °C 1 h, room temperature 45 min.

Transprotection of the benzyl carbamates 9-11 in a one pot reaction¹¹ gave the corresponding Bocprotected amines which could be easily purified, stored and deprotected with acid. Thus, hydrogenation of 9 in the presence of Boc_2O (eq 1) gave the transprotected carbamate 12 in 67% yield. The acyclic amine 13 was obtained as a side product. The formation of 13 may be explained by ring opening in a retro-Michael reaction followed by hydrogenation of the resulting enone to the saturated compound. The Boc-protected amine 12 was deprotected to the HCl salt of the amine 14 with hydrogen chloride in methanol in high yield.

In the transprotection of the phenyl-substituted carbamate 10, alcohol 15 was obtained in high yield as a 39:61 mixture of diastereomers (eq 2). Apparently, the ketone is reduced under these conditions. Oxidation with PCC in the presence of 4 Å mol sieves afforded the desired ketone 16 in high yield. Deprotection of the carbamate with HCl in methanol gave the HCl salt of the amine 17 quantitatively. The transprotection of the alkyl-substituted lactam 11 proceeded in a moderate yield. No side product was isolated after the reaction. Deprotection gave the amine 19 in a similar way.

Synthesis of bicyclic guanidines

Recently, a number of novel methods to convert an amine directly into a (protected) guanidine have been reported¹². Preliminary studies on 2,5-dimethylpyrrolidine as a model compound for secondary amines revealed that in our hands the procedure of Kim and Qian^{12h} using N,N-bis-(*tert*-butoxycarbonyl)-thiourea in the presence of HgCl₂ gave the best results.

Treatment of a technical ca. 10:1 mixture of cis- and trans-2,5-dimethylpyrrolidine with N,N-bis-(*tert*-butoxycarbonyl)-thiourea and HgCl₂ afforded protected guanidine **20** in 82% yield (eq 3). This method was therefore selected for the synthesis of bicyclic

guanidines from the pyrrolidines 14, 17 and 19. Reaction of 17 with bis-Boc-thiourea in the presence of $HgCl_2$ (eq 4) afforded the desired coupled product 21 in 93% yield containing a trace of the acyclic product 22. Treatment of the mixture of 21 and 22 with methanolic HCl gave the guanidine salt 23 in high yield as a single product. Thus, deprotection of 21 is directly followed by cyclisation of the free guanidine and dehydration to the conjugated product 23. Apparently, deprotection of 22 leads to regeneration of the pyrrolidine via Michael addition¹³.

The direct guanylation of the amine HCl salt 19 is presented in equation 5. Reaction of 19 with bis-Bocthiourea in the presence of HgCl₂ and Et₃N afforded in 99% yield a 73:27 mixture of the desired coupled product 24 and the acyclic product 25. In this case a relatively large amount of acyclic product was obtained as compared to the guanylation of 17. Both 22 and 25 are products of a formal retro-Michael reaction^{14,15}. Upon deprotection of the mixture of 24 and 25 with HCl in methanol, a mixture of five different guanidines (26-28) was obtained in 93% yield. The ratio of these guanidines was inferred from the guanidinium protons and the double bond protons in the ¹H NMR spectrum. Along with the dehydration products 26 and 27, a substantial amount of hemiaminals 28 was formed in this reaction. Attempts to favour dehydration by prolonged heating of this mixture did not lead to different product ratios.

The reaction of the β -ketoester substituted pyrrolidine 14 with bis-Boc-thiourea in the presence of HgCl₂ and Et₃N did not produce the expected guanidine (Scheme 4). Instead, the tricyclic compound 29 was isolated as a 1:1 mixture of diastereomers in 37% yield. In order to investigate the formation of this compound, 14 was treated with Et₃N in THF in a separate experiment. After work-up, a mixture of 29 (96% yield) and methyl acetoacetate (49% yield) was obtained. The presence of methyl acetoacetate was proven by TLC and NMR analysis. After prolonged evaporation the methyl acetoacetate was removed and 29 was obtained pure. A possible mechanism for the formation of 29 is presented in Scheme 4. Deprotonation of the amine HCl salt leads to the free amine which dimerizes by addition of the amine to the ketone to give 30. In a retro-Mannich reaction^{16,17} methyl acetoacetate is liberated and subsequent cyclization produces 31. Elimination of water then leads to the tricyclic compound 29.

Scheme 4. Proposed Mechanism for the Formation of 29.

It is evident from the reactions presented above, that the ketone function in 14 interferes with the guanylation of the amine. Apparently, the intermolecular reaction to the tricyclic compound 29 competes favourably with the coupling to bis-Boc-thiourea. To prevent this side reaction the ketone in 12 was reduced prior to the coupling reaction with N,N-bis-Boc-thiourea (eq 6). Reduction of the Boc-protected amine with NaBH₃CN in acetic acid selectively produced the β -hydroxyester 32 in good yield. This reaction probably proceeds by reduction of the enol tautomer of 12^{18} . Deprotection of the amine with HCl in methanol afforded the aminoalcohol 33 as the HCl salt. Now, reaction with bis-Boc-thiourea in the presence of HgCl₂ and Et₃N indeed produced the desired guanidine 34 in good yield.

Figure 1. ORTEP-diagram of 34a.

2634

One of the diastereomers of 34 was a obtained as a solid. One single recrystallisation of this diastereomer led to beautiful crystals (mp 122-123 °C), which appeared suitable for X-ray analysis (Figure 1)¹⁹. The X-ray analysis nicely proved the structure of the protected guanidine 34. Figure 1 also reveals two intramolecular hydrogen bonds in the crystal. For the synthesis of the desired bicyclic guanidine, the β -hydroxyester 34 should be oxidized to the β -ketoester. Swern oxidation¹⁹ of 33 led to the unexpected formation of the linear product 35 as a mixture of *E*-and *Z*-isomers in 67% yield, containing only a trace of the desired pyrrolidine 36. The formation of the retro-Michael product 35 as the main product is not readily explained. Application of other oxidation methods (e.g. PDC, PCC, TPAP²⁰, Dess-Martin²¹, IBX²²) did not lead to the formation of the desired pyrrolidine 36 either. Removal of the Boc protecting groups from 35 by treatment with HCl in methanol resulted in the formation of the pyrrolidine via Michael addition, followed by a second ring closure and dehydration to the guanidine 37.

Figure 2. ORTEP-diagram of 39a.

In the projected enantioselective synthesis of ptilomycalin A (Scheme 1), the valuable stereocentres α to the nitrogen atom in the pyrrolidine 2 should be retained throughout the synthesis. Therefore, introduction of the guanidine moiety via the route described in eq 6 will not be useful for our synthesis of ptilomycalin A, as this will lead to loss of this stereocentre. In order to avoid this racemization, the dimethoxyacetal was selected as a protecting group for the β -ketoester. After much experimentation we found that reaction of the Boc-protected amine 12 with trimethyl orthoformate in methanol in the presence of a catalytic amount of H₂SO₄ gave, the desired dimethoxyacetal **38** with concomitant deprotection of the pyrrolidine (eq 7). Attempts to purify the free amine (with basic aluminia) resulted in partial decomposition. Therefore, crude **38** was used immediately in the coupling with *N*,*N*-bis(*tert*-butoxycarbonyl)thiourea, HgCl₂ and Et₃N to give the desired guanidine **39** in 83%

overall yield from the protected amine 12. Satisfactorily, the guanylation of 38 did not produce any of the retro-Michael product. Guanidine 39 was obtained as a 66:34 mixture of diastereomers, which were separated by chromatography. The major diastereomer (39a) was obtained as a solid, and recrystallisation led to crystals suitable for X-ray analysis (Figure 2). The X-ray analysis nicely proved the structure of the protected guanidine. Treatment of both diastereomers (39a and b) with HCl in methanol in separate experiments selectively afforded the desired bicyclic guanidine 37 in high yield in both cases. Presumably, one of the Boc groups of the guanidine moiety is deprotected first. The resulting nitrogen atom then effects acid-mediated substitution of a methoxy group to form the six-membered ring. Further elimination of methanol and removal of the second Boc group produces product 37. In this sequence, ring opening of the pyrrolidine seems highly improbable, although repetition of the experiment with enantiopure 12 will provide definitive proof.

In conclusion, successful syntheses of three different bicyclic guanidines have been achieved starting from pyrrolidin-2-one. The C-2 substituted pyrrolidines were prepared via an N-acyliminium ion coupling reaction with silyl enol ethers. An efficient direct guanylation of the 2-monosubstituted pyrrolidines was carried out with N,N'-bis-(*tert*-butoxycarbonyl)thiourea in the presence of HgCl₂ and Et₃N. In the case of the β ketoester **12** it was shown that the β -ketoester should be properly protected in this process to avoid dimerization. The guanidine **37** is closely related to structural features of crambescin A^{1f} and the batzelladines A and B¹ⁱ. Furthermore, this approach to the synthesis of polycyclic guanidines will be applied in the total synthesis of ptilomycalin A.

ACKNOWLEDGEMENT

We thank J. Fraanje and K. Goubitz of the AIMS' Laboratory of Crystallography for the X-ray crystal structure determinations. We wish to thank Professor W. N. Speckamp for stimulating discussions.

EXPERIMENTAL

General information. Experimental techniques and analytical measurements were applied as previously described.⁷ IR spectral data are reported in cm⁻¹ and NMR chemical shifts in ppm with CDCl₃ as a solvent (unless stated otherwise). 2-(Trimethylsiloxy)-1-pentene¹⁰ and *N*, *N*-bis-(*tert*-butoxycarbonyl)thiourea²³ were prepared according to literature procedures. Pyrrolidin-2-one, methyl-3-trimethylsiloxy-2-butenoate, 1-phenyl-1-trimethylsiloxyethylene, and mercury(II)chloride (HgCl₂) were commercially available. 2,5-Dimethylpyrrolidine was commercially available as a technical (ca. 90:10) *cis/trans* mixture, and was used as such.

2-Oxo-pyrrolidine-1-carboxylic Acid Benzyl Ester (6). To a solution of pyrrolidin-2-one (4.7 mL, 62 mmol) in 250 mL of THF was added at -78 °C 69 mL of a 1.0 M solution of LiHMDS in hexane (69 mmol). After stirring at -78 °C for 30 min, benzylcyanoformate was added (7.5 mL, 62.4 mmol), and the mixture was stirred at -78 °C for 30 min. After warming to room temperature, the mixture was stirred for an additional 1.5 h, poured out into a saturated aqueous solution of NH₄Cl (250 mL) and extracted with EtOAc (3 times 250 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:2) afforded 6 (12.0 g, 54.6 mmol, 87%) as a light yellow oil. R_f 0.3 (EtOAc/hexanes 1:2). IR

3020, 2980, 2950, 2880, 1780, 1740, 1715. ¹H NMR (400 MHz) 1.94-2.02 (m, 2H, H-4), 2.49 (t, J = 8.1 Hz, 2H, H-3), 3.77 (t, J = 7.2 Hz, 2H, H-5), 5.24 (s, 2H, CH₂O), 7.26-7.41 (m, 5H, Ar-H). ¹³C NMR (100 MHz) 17.45 (C-4), 32.69 (C-3), 46.40 (C-5), 67.91 (CH₂O), 128.16, 128.37 and 128.55 (Ar-CH), 135.29 (Ar-C), 151.42 (C=O), 174.27 (C=O amide). HRMS calculated for C₁₂H₁₃NO₃ 219.0895, found 219.0879.

2-Hydroxy-pyrrolidine-1-carboxylic Acid Benzyl Ester (7). To a solution of **6** (11.0 g, 50.2 mmol) in 200 mL of CH₂Cl₂ was added at -78 °C 100 mL of a 1.0 M solution of DIBAL-H in toluene (100 mmol) over a periode of 40 min. After stirring for 1.5 h at -78 °C, MeOH (14 mL) and a saturated aqueous solution of potassium sodium tartrate (200 mL) were added in succession. After warming to room temperature, the mixture was stirred for an additional 3 h. Water (50 mL) was added and the mixture was extracted with CH₂Cl₂ (4 times 200 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:1) afforded 7 (9.72 g, 43.9 mmol, 88%) as a colourless oil. R_f 0.25 (EtOAc/hexanes 1:1). IR 3580, 3420, 3020, 2990, 2960, 2870, 1680. ¹H NMR (400 MHz, mixture of rotamers) 1.79-2.14 (m, 4H, H-3 and H-4), 3.05 (br s, 0.35H, OH), 3.31-3.40 (m, 1H, H-5), 3.56-3.64 (m, 1H, H'-5), 3.86 (br s, 0.65H, OH), 5.15 (s) and 5.18 (s, 2H, CH₂O), 5.49-5.54 (m, 1H, H-2), 7.26-7.37 (m, 5H, Ar-H). ¹³C NMR (100 MHz, mixture of rotamers) 21.86 and 22.71 (C-4), 32.98 and 33.95 (C-3), 45.69 and 46.08 (C-5), 64.72 and 66.83 (CH₂O), 81.08 and 81.75 (C-2), 126.86, 127.23, 127.82, 128.00, 128.32 and 128.46 (Ar-CH), 136.54 and 141.31 (Ar-C), 154.34 and 155.38 (C=O). HRMS calculated for C1₂H₁₅NO₃ 221.1052, found 221.1036.

2-Methoxy-pyrolidine-1-carboxylic Acid Benzyl Ester (8). To a solution of **7** (3.42 g, 15.5 mmol) in 20 mL of MeOH were added trimethyl orthoformate (8.5 mL, 77.7 mmol) and PPTS (602 mg, 2.4 mmol). After stirring at room temperature for 2 h, Na₂CO₃ was added and the mixture was concentrated in vacuo. Water (20 mL) and a saturated aqueous solution of Na₂CO₃ (20 mL) were added and the mixture was extracted with Et₂O (4 times 50 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:2) afforded **8** (3.48 g, 14.8 mmol, 96%) as a colourless oil. R_f 0.3 (EtOAc/hexanes 1:2). IR 3020, 2990, 2940, 2890, 2830, 1700. ¹H NMR (400 MHz, mixture of rotamers) 1.72-2.08 (m, 4H, H-3 and H-4), 3.25-3.54 (m, 5H, H-5 and CH₃O), 5.15-5.23 (m, 2H, CH₂O), 7.26-7.38 (M, 5H, Ar-H). ¹³C NMR (100 MHz, mixture of rotamers) 21.67 and 22.62 (C-4), 31.93 and 32.52 (C-3), 45.72 and 45.89 (C-5), 55.33 and 55.90 (CH₃O), 66.85 and 67.10 (CH₂O), 88.52 and 89.13 (C-2), 126.83, 127.26, 127.65, 127.72, 127.70, 127.98, 128.35 and 128.45 (Ar-CH), 136.66, 141.40 (Ar-C), 154.89 and 155.77 (C=O). HRMS calculated for C₁₃H₁₇NO₃ 235.1208, found 235.1214.

2-(1-Methoxycarbonyl-2-oxo-propyl)-pyrrolidine-1-carboxylic Acid Benzyl Ester (9). To a solution of 8 (49.0 mg, 0.208 mmol) in 1.0 mL of CH₂Cl₂ were added at -78 °C methyl-3-trimethylsiloxy-2butenoate (50 μ L, 0.26 mmol) and TMSOTf (42 μ L, 0.23 mmol), and the mixture was stirred at -78 °C for 1 h. After warming to room temperature, the mixture was stirred for an additional 45 min, poured out into a saturated aqueous solution of NaHCO₃ (4 mL) and extracted with CH_2Cl_2 (4 times 5 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:1) afforded 9 (66.6 mg, 0.208 mmol, 100%) as a colourless oil. Rf 0.35 (EtOAc/hexanes 1:1). IR 3020, 3000, 2950, 2880, 1735, 1710, 1690. ¹H NMR (400 MHz, mixture of diastereomers and rotamers) 1.76-2.25 (m, 7H, CH₃CO, H-3 and H-4), 3.30-4.68 (m, 7H, H-5, CH₃O, H-2 and CH(CO)₂), 5.07-5.16 (m, 2H, CH₂O), 7.16-7.39 (m, 5H, Ar-H). ¹H NMR (400 MHz, toluene-d₈, 378K, mixture of 2 diastereomers) 1.29-1.40 (m, 1H), 1.47-1.58 (m, 1H), 1.77-1.99 (m, 5H, including characteristic signals for CH₃CO: 1.89 (s) and 1.91 (s)), 3.14-3.20 (m, 1H, H-5), 3.28-3.42 (m, 4H, H'-5 and CH₃O, including characteristic signals for CH₃O: 3.31 (s) and 3.33 (s)), 4.16 (d, J = 5.4 Hz) and 4.25 (d, J = 5.0 Hz, 1H, CH(CO)₂), 4.33-4.42 (m, 1H, H-2), 5.03 (s, 2H, CH₂O), 7.01-7.22 (m, 5H, Ar-H). ¹³C NMR (100 MHz, D₁ = 10s, mixture of diastereomers and rotamers) 22.69 and 23.40 (C-4), 28.15 and 28.30 (C-3), 28.98, 29.84 and 31.14 (CH3), 46.34, 46.61 and 49.49 (C-5), 52.01 and 52.04 (CH₃O), 56.07, 56.55, 57.13, 59.04, 60.64 and 60.80 (C-2 and CH(CO)₂), 64.66, 66.48 and 66.82 (CH₂O), 126.59, 127.02, 127.44, 127.53, 127.70, 128.12, 128.22, 128.34 and 128.48 (Ar-CH), 136.58 and 141.21

(Ar-C), 154.63 (C=O), 167.30, 168.55 and 169.01 (C=O ester), 200.23 and 201.41 (C=O ketone). HRMS calculated for $C_{17}H_{21}NO_5$ 319.1419, found 319.1408.

2-(2-Oxo-2-phenyl-ethyl)-pyrrolidine-1-carboxylic Acid Benzyl Ester (10). To a solution of 8 (894 mg, 3.80 mmol) in 4.0 mL of CH₂Cl₂ were added at -78 °C 1-phenyl-1-trimethylsiloxyethylene (860 µL, 4.2 mmol) and TMSOTf (760 µL, 4.2 mmol), and the mixture was stirred at -78 °C for 1 h. After warming to room temperature, the mixture was stirred for an additional 45 min, poured out into a saturated aqueous solution of NaHCO₃ (25 mL) and extracted with CH₂Cl₂ (4 times 30 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:3, then 1:2) afforded 10 (1.06 g, 3.41 mmol, 90%) as a colourless oil. Rf 0.3 (EtOAc/hexanes 1:3). IR 3050, 3020, 2990, 2960, 2870, 1680, 1590, 1490, 685. ¹H NMR (400 MHz, mixture of rotamers) 1.75-2.15 (m, 4H, H-3 and H-4), 2.80 (dd, J =15.5, 10.3 Hz, 1H, CH₂CO), 3.41-3.54 (m, 2.4H, CH₂CO and H-5), 3.84 (dd, J = 2.3, 15.3 Hz, 0.6H, H-5), 4.35-4.40 (m, 1H, H-2), 5.11-5.15 (m, 2H, CH₂O), 7.26-8.05 (m, 10H, Ar-H). ¹H NMR (400 MHz, toluene d_{8} , 378K) 1.31-1.40 (m, 1H), 1.44-1.62 (m, 2H), 1.70-1.80 (m, 1H), 2.57 (dd, J = 9.6, 15.1 Hz, 1H, CH₂C=O), 3.17-3.29 (m, 2H, CH₂C=O and H-5), 3.59 (d, J = 14.5 Hz, 1H, H'-5), 4.26-4.32 (m, 1H, H-2), 5.03 (d, J = 12.5 Hz, 1H, CH₂O), 5.08 (d, J = 12.5 Hz, 1H, CH₂O), 7.01-7.87 (m, 10H, Ar-H). ¹³C NMR (100 MHz, mixture of rotamers) 22.77 and 23.59 (C-4), 30.36 and 31.20 (C-3), 42.84 and 43.73 (CH₂C=O), 46.45 and 46.79 (C-5), 54.20 and 54.98 (C-2), 66.60 and 66.97 (CH₂O), 126.85, 127.78, 127.93, 128.25, 128.33, 128.48, 128.60 and 133.15 (Ar-CH), 136.73 and 136 89 (Ar-C), 154.59 and 154.74 (C=O), 198.43 and 198.78 (C=O ketone). HRMS-FAB $[M+H]^+$ calculated for C₂₀H₂₂NO₃ 324.1600, found 324.1588.

2-(2-Oxo-pentyl)-pyrrolidine-1-carboxylic Acid Benzyl Ester (11). To a solution of **8** (315 mg, 1.34 mmol) in 2.0 mL of CH₂Cl₂ were added at -78 °C 2-(trimethylsiloxy)-1-pentene (300 mg, 1.89 mmol) and TMSOTf (290 μ L, 1.60 mmol), and the mixture was stirred at -78 °C for 1 h. After warming to room temperature, the mixture was stirred for an additional 45 min, poured out into a saturated aqueous solution of NaHCO₃ (10 mL) and was extracted with CH₂Cl₂ (4 times 15 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:3) afforded **11** (386.3 mg, 1.33 mmol, 100%) as a light yellow oil. *R_f* 0.3 (EtOAc/hexanes 1:3). IR 3020, 3000, 2960, 2870, 1680, 695. ¹H NMR (400 MHz, mixture of rotamers) 0.82-4.65 (m, 16H), 5.05-5.24 (m, 2H, CH₂O), 7.21-7.33 (m, 5H, Ar-H). ¹³C NMR (100 MHz, mixture of rotamers) 12.58 and 13.66 (CH₃), 17.13 and 18.47 (CH₂), 22.80 and 23.58 ((CH₃)₃C), 30.85 and 31.62 (CH₂), 45.07, 46.33, 46.49 and 46.62 (2× CH₂), 53.29 and 54.04 (C-2), 65.01 (CH₂), 66.53 and 66.79 (CH₂), 126.84, 127.32, 127.75, 127.88, 128.37 and 128.43 (Ar-CH), 136.68, 136.88 and 141.27 (Ar-C), 154.59 (C=O), 209.34 and 209.53 (C=O ketone). HRMS calculated for C₁₇H₂₃NO₃ 289.1678, found 289.1693.

2-(1-Methoxycarbonyl-2-oxo-propyl)-pyrrolidine-1-carboxylic Acid tert-Butyl Ester (12). To a solution of **9** (1.05 g, 3.29 mmol) in 6 mL of MeOH were added Boc₂O (3.6 g, 16.5 mmol) and 10% Pd on coal (100 mg). The mixture was stirred under a hydrogen atmosphere (3 atm) at room temperature for 18 h. After filtration through a path of celite, the mixture was concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:5, then 1:2) afforded two fractions. The first fraction consisted of **12** (631 mg, 2.21 mmol, 67%) as a colourless oil. R_f 0.35 (EtOAc/hexanes 1:2). IR 2990, 2970, 2920, 2870, 1735, 1705, 1675, 1390, 1160. ¹H NMR (400 MHz, mixture of diastereomers and rotamers) 1.31-1.48 (m, 9H, (CH₃)₃C), 1.70-2.12 (m, 4H, H-3 and H-4), 2.18 (s) and 2.19 (s, 3H, CH₃CO), 3.17-4.34 (m, 7H, H-5, CH₃O, H-2 and CH(CO)₂, including characteristic signals for CH₃O: 3.65(s) and 3.68 (s)). ¹H NMR (400 MHz, toluene- d_8 , 378K, mixture of 2 diastereomers) 1.25-1.58 (m, 11H, including characteristic signals for (CH₃)₃C: 1.40 (s) and 1.41 (s)), 1.76-2.00 (m, 5H, including characteristic signals for CH₃O: 1.96 (s) and 1.97 (s)), 3.08-3.15 (m, 11H, H-5), 3.27-3.43 (m, 4H, H'-5 and CH₃O), including characteristic signals for CH₃O: 3.33 (s) and 3.37 (s)), 4.13 (d, J = 6.0 Hz, 0.5H, CH(CO)₂), 4.28-4.41 (m, 1.5H, H-2 and CH(CO)₂). ¹³C NMR (63 MHz, mixture of diastereomers and rotamers) 23.44 (C-4), 28.05 and 28.63 (C-3), 28.34 ((CH₃)₃C), 31.47 (CH₃CO), 46.50 and

46.77 (C-5), 52.16 (CH₃O), 56.35, 56.90, 59.50 and 61.34 (C-2 and CH(CO)₂), 79.65 ((CH₃)₃C), 154.39 (C=O), 168.79 and 169.28 (C=O ester), 201.58 (C=O ketone). FAB-HRMS [M+H]⁺ calculated for C₁₄H₂₄NO₅ 286.1654, found 286.1636. The second fraction consisted of *N*-Boc-2-Acetyl-6-amino-hexanoic Acid Methyl Ester (13) (129 mg, 0.476 mmol, 14%) as a colourless oil. R_f 0.2 (EtOAc/hexanes 1:2). IR 3450, 2970, 2930, 2850, 1735, 1705, 1500. ¹H NMR (400 MHz) 1.22-1.88 (m, 15H, including characteristic signal for (CH₃)₃C: 1.43 (s)), 2.22 (s, 3H, CH₃CO), 3.08-3.15 (m, 2H, CH₂N), 3.41 (t, J = 7.3 Hz, 1H, CH(CO)₂), 3.73 (s, 3H, CH₃O), 4.52 (br s, 1H, NH). ¹³C NMR (50 MHz) 24.36 (CH₂), 27.52 (CH₂), 28.16 ((CH₃)₃C), 28.62 (CH₃CO), 29.59 (CH₂), 39.95 (CH₂N), 52.15 (CH₃O), 59.28 (CH(CO)₂), 78.93 ((CH₃)₃C), 155.70 (C=O), 169.96 (C=O ester), 202.69 (C=O ketone). FAB-HRMS [M+H]⁺ calculated for C₁₄H₂₆NO₅ 288.1811 found 288.1754.

3-Oxo-2-pyrrolidin-2-yl-butyric Acid Methyl Ester Hydrochloride (14). To a solution of **12** (121.9 mg, 0.427 mmol) in 0.5 mL of MeOH was added 1.0 mL of a 4.7 M solution of HCl in MeOH (4.7 mmol). After stirring at room temperature for 3 h, evaporation of the volatiles gave **14** (93.5 mg, 0.422 mmol, 99%) as a colourless oil. IR (CHCl₃) 3400, 2950, 2700, 1740, 1715. ¹H NMR (400 MHz, D₂O, mixture of 2 diastereomers) 1.67-1.81 (m, 1H), 1.92-2.31 (m, 3H), 2.40 (s) and 2.43 (s, 3H, CH₃), 3.30-3.42 (m, 2H, H-5), 3.85 (s, 3H, CH₃O), 4.04-4.11 (m, 1H, H-2), 4.32-4.39 (m, 0.2H, CH(CO)₂, partially exchanged with D₂O). ¹³C NMR (63 MHz, D₂O, mixture of 2 diastereomers) 25.89 and 25.91 (C-4), 30.76 and 30.92 (C-3), 32.13 and 32.60 (CH₃), 48.66 (C-5), 56.39 and 56.50 (CH₂O), 59.80 and 59.90 (C-2), 61.33, 61.66, 61.99 and 62.11 (2× t, J_{CD} circa 20 Hz, $CD(CO)_2$), 170.85 and 171.27 (C=O ester), 206.89 and 207.58 (C=O ketone). HRMS-FAB [M-Cl]⁺ calculated for C9H₁₆NO₃ 186.1130, found 186.1126.

2-(2-Oxo-2-phenyl-ethyl)-pyrrolidine-1-carboxylic Acid tert-Butyl Ester (15). To a solution of 10 (123 mg, 0.40 mmol) in 0.8 mL of MeOH were added Boc₂O (260 mg, 1.2 mmol) and 10% Pd on coal (12 mg). The mixture was stirred under a hydrogen atmosphere (3 atm) at room temperature for 18 h. After filtration through a path of celite, the mixture was concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:5, then 1:3) afforded two fractions. The first fraction consisted of 15a (41.4 mg, 0.14 mmol, 36%) as a colourless oil. $R_f 0.2$ (EtOAc/hexanes 1:5). IR 3590, 3390, 3000, 2970, 2920, 2860, 1660, 1400, 695. ¹H NMR (400 MHz, mixture of rotamers) 1.41-2.04 (m, 16H, including characteristic signal for (CH₃)₃C): 1.49 (s)), 3.37-3.40 (m, 2H, H-5), 4.28 (br s, 1H), 4.63-4.66 (m, 1H), 7.19-7.39 (m, 5H, Ar-H). ¹H NMR (400 MHz, toluene-d₈, 378K) 1.24-1.63 (m, 14H, including characteristic signal for (CH₃)₃C: 1.40 (s)), 1.73-1.79 (M, 1H), 3.09-3.14 (m, 1H, H-5), 3.20-3.26 (m, 1H, H'-5), 4.12-4.14 (m, 1H), 4.70-4.74 (m, 1H), 7.05-7.37 (m, 5H, Ar-H). ¹³C NMR (50 MHz, mixture of rotamers) 23.37 (C-4), 28.22 ((CH₃)₃C), 30.99 (C-3), 46.11 and 46.1 (C-5 and CH2CHOH), 53.74 (C-2), 69.75 (CHOH), 79.87 ((CH3)3C), 125.43, 126.58 and 127.98 (Ar-CH), 144.19 (Ar-C), 156.80 (C=O). HRMS calculated for C17H25NO3 291.1834, found 291.1842. The second fraction consisted of 15b (65.9 mg, 0.23 mmol, 57%) as a colourless oil. Rf 0.1 (EtOAc/hexanes 1:5). IR 3590, 3360, 3000, 2970, 2870, 1665, 1400, 695. ¹H NMR (400 MHz, mixture of rotamers) 1.44 (s, 9H, (CH₃)₃C), 1.68-2.12 (m, 6H, H-3, H-4 and CH₂CHOH), 2.47-4.73 (m, 5H, H-5, H-2 and CHOH), 7.22-7.36 (m, 5H, Ar-H). ¹H NMR (400 MHz, toluene-d₈, 378K) 1.34-1.68 (m, 15H, including characteristic signal for (CH₃)₃C: 1.41 (s)), 2.75 (br s, 1H, OH), 3.08-3.13 (m, 1H, H-5), 3.21-3.27 (m, 1H, H'-5), 3.97-4.02 (m, 1H, H-2), 4.62 (d, J = 8.4 Hz, 1H, CHOH), 7.01-7.28 (m, 5H, Ar-H). ¹³C NMR (100 MHz, mixture of rotamers) 23.13 and 23.74 (C-4), 28.50 ((CH₃)₃C), 32.14 (C-3), 45.91 and 46.38 (C-5 and CH₂CHOH), 55.53 (C-2), 72.54 (CHOH), 79.69 ((CH₃)₃C), 125.61, 126.93 and 128.22 (Ar-CH), 145.21 (Ar-C), 155.41 (C=O). HRMS calculated for C₁₇H₂₅NO₃ 291.1834, found 291.1833.

2-(2-Oxo-2-phenyl-ethyl)-pyrrolidine-1-carboxylic Acid *tert*-Butyl Ester (16). To a solution of 15 (356.2 mg, 1.22 mmol, 39:61 mixture of diastereomers) in 10 mL of CH_2Cl_2 were added molecular sieves (4Å, powder, 1.05 g) and PCC (532 mg, 2.47 mmol). After stirring at room temperature for 3.5 h, the reaction mixture was directly subjected to flash chromatography (EtOAc/hexanes 1:3) to afford 16 (345.9 mg, 1.20

mmol, 98%) as a colourless oil. R_f 0.3 (EtOAc/hexanes 1:3). IR 3020, 3000, 2970, 2930, 2880, 1675, 1400, 690.¹H NMR (400 MHz, mixture of rotamers) 1.42 (s, 9H, (CH₃)₃C), 1.68-2.09 (m, 4H, H-3 and H-4), 2.75-2.86 (m, 1H), 3.30-3.75 (m, 3H), 4.26-4.32 (m, 1H, H-2), 7.35-7.55 (m, 3H, Ar-H), 7.95-8.00 (m, 2H, Ar-H). ¹H NMR (400 MHz, toluene- d_8 , 378K) 1.32-1.63 (m, 12H, including characteristic signal for (CH₃)₃C: 1.42 (s)), 1.71-1.80 (m, 1H), 2.62 (dd, J = 9.5, 14.9 Hz, 1H, CH₂C=O), 3.14-3.27 (m, 2H), 3.58 (d, J = 14.0 Hz, 1H), 4.25-4.31 (m, 1H, H-2), 7.08-7.17 (m, 3H, Ar-H), 7.91-7.93 (m, 2H, Ar-H). ¹³C NMR (50 MHz, mixture of rotamers) 17.84 and 18.23 (C-4), 23.38 ((CH₃)₃C), 25.24 and 26.18 (C-3), 38.07 and 41.27 (C-5 and CH₂C=O), 49.12 (C-2), 74.41 ((CH₃)₃C), 123.11, 123.45 and 127.97 (Ar-CH), 131.70 (Ar-C), 149.20 (C=O), 193.62 (C=O ketone). HRMS calculated for C₁₇H₂₃NO₃ 289.1678, found 289.1685.

1-Phenyl-2-pyrrolidin-2-yl-ethanone Hydrochloride (17). To a solution of 16 (65.3 mg, 0.226 mmol) in 0.25 mL of MeOH was added 0.25 mL of a 7.3 M solution of HCl in MeOH (1.8 mmol). After stirring at room temperature for 3.5 h, evaporation of the volatiles gave 17 (50.9 mg, 0.226 mmol, 100%) as a colourless oil. IR (CHCl₃) 3400, 2990, 2920, 2880, 2650, 1695, 1600, 685. ¹H NMR (200 MHz, D₂O) 1.72-1.94 (m, 1H), 1.94-2.21 (m, 2H), 2.24-2.43 (m, 1H), 3.24-3.39 (m, 2H, H-5), 3.53 (dd, J = 9.5, 19.0 Hz, 1H, CH₂C=O), 3.79 (dd, J = 3.8, 19.0 Hz, 1H, CH₂C=O), 4.00-4.09 (m, 1H, H-2), 7.56 (t, J = 7.7 Hz, 2H, Ar-H), 7.68-7.75 (m, 1H, Ar-H), 7.99 (d, J = 7.9 Hz, 2H, Ar-H). ¹³C NMR (50 MHz, D₂O) 24.85 (C-4), 31.43 (C-3), 42.27 and 47.17 (C-5 and CH₂O), 57.60 (C-2), 129.91, 130.69, 136.24 (Ar-CH), 137.12 (Ar-C), 202.41 (C=O ketone). HRMS-FAB [M-Cl]⁺ calculated for C₁₂H₁₅NO 212.1051, found 212.1080.

2-(2-Oxo-pentyl)-pyrrolidine-1-carboxylic Acid *tert*-Butyl Ester (18). To a solution of 17 (182.5 mg, 0.631 mmol) in 1.5 mL of MeOH were added Boc₂O (692 mg, 3.17 mmol) and 10% Pd on coal (20 mg). The mixture was stirred under a hydrogen atmosphere (3 atm) at room temperature for 18 h. After filtration through a path of celite, the mixture was concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:5) afforded 18 (111.4 mg, 0.436 mmol, 69%) as a colourless oil. R_f 0.2 (EtOAc/hexanes 1:5). IR 2990, 2960, 2930, 2870, 1700, 1670, 1400. ¹H NMR (400 MHz, mixture of rotamers) 0.77 (t, J = 7.3 Hz) and 0.84 (t, J = 7.4 Hz, 3H, CH₃), 1.35-2.39 (m, 19H, including characteristic signal for (CH₃)₃C: 1.39 (s)), 2.92 (br s, 1H), 3.25-3.31 (m, 2H, H-5), 4.05-4.10 (m, 1H, H-4). ¹H NMR (400 MHz, toluene- d_8 , 378K) 0.79 (t, J = 7.4 Hz, 3H, CH₃), 1.26-1.53 (m, 17H, including characteristic signal for (CH₃)₃C: 1.42 (s)), 1.74-1.79 (m, 1H), 2.11-2.18 (m, 1H), 2.87 (dd, J = 3.2, 15.6 Hz, 1H), 3.12-3.24 (m, 2H, H-5), 4.06-4.10 (m, 1H, H-2). ¹³C NMR (100 MHz, mixture of rotamers) 13.62 (CH₃), 17.11 (CH₂), 20.61 and 23.14 (CH₂), 27.32 and 28.44 ((CH₃)₃C), 31.08 (CH₂), 45.11 and 46.25 (CH₂), 52.24, 52.56, 52.88 and 54.74 (2× CH₂), 53.40, 57.74 (C-2), 79.21 ((CH₃)₃C), 154.20 (C=O), 209.55 (C=O ketone). HRMS-FAB [M+H]⁺ calculated for C₁₄H₂₆NO₃ 256.1912, found 256.1912.

1-Pyrrolidin-2-yl-pentan-2-one Hydrochloride (19). To a solution of **18** (84.5 mg, 0.331 mmol) in 0.5 mL of MeOH was added 0.5 mL of a 7.3 M solution of HCl in MeOH (3.7 mmol). After stirring at room temperature for 4 h, evaporation of the volatiles gave **19** (62.2mg, 0.324 mmol, 98%) as a colourless oil. IR (CHCl₃) 3400, 2960, 2870, 2700, 1710. ¹H NMR (400 MHz, D₂O), 0.89 (t, J = 7.4 Hz, 3H, CH₃), 1.57 (sextet, J = 7.4 Hz, 2H, CH₂CH₃), 1.63-1.73 (m, 1H), 1.94-2.09 (m, 2H), 2.20-2.31 (m, 1H), 2.54 (t, J = 7.4 Hz, 2H, CH₂CH₂C=O), 2.99 (dd, J = 9.3, 19.0 Hz, 1H, CH₂C=O), 3.19 (dd, J = 4.2, 19.0 Hz, 1H, CH₂C=O), 3.21-3.37 (m, 2H, H-5), 3.83-3.91 (m, 1H, H-2). ¹³C NMR (100 MHz, D₂O) 15.57 (CH₃), 19.50 (CH₂), 25.72 (CH₂), 32.23 (CH₂), 46.46 (CH₂), 46.94 (CH₂), 48.15 (CH₂), 58.26 (C-2), 216.33 (C=O). HRMS-FAB [M-HCl+H]⁺ calculated for C₉H₁₈NO 156.1388, found 156.1370.

N, N'-Bis-Boc[(2,5-dimethyl-pyrrolidin-1-yl)-imino-methyl]-amine (20). To a solution of 2,5dimethyl-pyrrolidine (92.4 mg, 0.932 mmol) in 0.45 mL of DMF were added at 0 °C N, N'-bis-(*tert*butoxycarbonyl)thiourea (258 mg, 0.934 mmol), mercury(II)chloride (253 mg, 0.932 mmol) and Et₃N (300 μ L, 2.15 mmol). The mixture was stirred at 0 °C for 30 min, allowed to warm to room temperature and stirred for an

additional 18 h. The mixture was diluted with EtOAc (5 mL) and filtered through a pad of celite. The filtrate was washed with brine (5 mL), and the water layer was extracted with EtOAc (3 times 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was dissolved in Et₂O/hexanes 1:1 (5 mL) and washed with saturated aqueous NaHCO₃ (5 mL). The water layer was extracted with Et₂O/hexanes 1:1 (3 times 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Recrystallisation from Et₂O/hexanes afforded cis-20 (207.5 mg, 0.608 mmol, 65%) as white crystals, mp. 116-117 °C. ¹H NMR (400 MHz) 1.24 (d, J = 6.4 Hz, 6H, 2× CH₃), 1.43 (s, 18H, 2× C(CH₃)₃), 1.59-1.67 (m, 2H, H-3 and H-4), 1.97-2.04 (m, 2H, H-3 and H-4), 4.24-4.25 (m, 2H, H-2 and H-5), 9.10 (br s, 1H, NH). ¹³C NMR (62.5 MHz) 20.92 (2× CH₃), 28.12 (C(CH₃)₃), 31.37 (C-3 and C-4), 55.81 (C-2 and C-5), 87.05 (C(CH₃)₃), 151.50 (C=N), 162.11 (2× C=O). HRMS calculated for $C_{17}H_{31}O_4N_3$ 341.2315, found 341.2323. Anal. Found C, 59.81; H, 9.15; N, 12.24. Calculated for C₁₇H₃₁O₄N₃ C, 59.80; H, 9.15; N, 12.31. Flash chromatography of the residue (EtOAc/hexanes 1:6) yielded a 60:40 *cis/trans* mixture of **20** (54.2 mg, 0.159 mmol, 17%). Rf 0.50 (EtOAc/hexane 1:20) IR 3400, 2960, 2930, 2860, 1730, 1590. Characteristic signals for trans-20: ¹H NMR (400 MHz, 60:40 mixture of cis- and trans-isomers) 1.17 (d, J = 6.1 Hz, 6H, 2× CH₃), 1.45 (s, 18H, 2× C(CH₃)₃), 1.49-1.53 (m, 2H, H-3 and H-4), 2.1-2.15 (m, 2H, H-3 and H-4), 4.3-4.35 (m, 2H, H-2 and H-5), 9.10 (br s, 1H, NH).

N, N'-Bis-Boc-2-[1-(Amino-imino-methyl)-pyrrolidin-2-yl]-1-phenyl-ethanone (21). To a solution of 17 (48.2 mg, 0.213 mmol) in 0.4 mL of DMF were added at 0 °C N,N'-bis-(tert-butoxycarbonyl)thiourea (59 mg, 0.213 mmol), HgCl₂ (58 mg, 0.214 mmol) and Et₃N (98 μ L, 0.70 mmol) in succession. The mixture was stirred at 0 °C for 30 min. After warming to room temperature the reaction mixture was stirred for an additional 18 h, diluted with EtOAc (5 mL) and was filtered through a path of celite. Water (5 mL) and a saturated aqueous solution of NaCl (5 mL) were added to the filtrate and the mixture was extracted with EtOAc (4 times 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was dissolved in Et₂O/hexanes 1:1 (10 mL), poured out into a saturated aqueous solution of NaHCO₃ (5 mL) and extracted with Et₂O/hexanes 1:1 (4 times 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:3) afforded 21 containing a trace of 22 (85.1 mg, 0.197 mmol, 93%) as a light yellow oil. Rf 0.3 (EtOAc/hexanes 1:3). IR 2975, 2930, 2870, 1730, 1670, 1600, 1140, 690. ¹H NMR (400 MHz, mixture of 21 and 22) 1.18-4.65 (m, 26.5H, including characteristic signals for (CH₃)₃C: 1.46 (s), 1.47 (s), 1.48 (s) and 1.49 (s)), 6.92 (d, J = 15.43 Hz, 0.25H, CH=CHC=O), 6.99-7.06 (m, 0.25H, CH=CHC=O), 7.31-8.38 (m, 5H, Ar-H), 10.31 (br s, 0.65H) and 11.50 (br s, 0.35H, NH). ¹³C NMR (100 MHz, mixture of **21** and **22**) Data for **21**: 27.61 (C-4), 28.03 and 28.26 (2× (CH₃)₃C), 30.05 (C-3), 40.17 and 43.14 (C-5 and CH₂C=O), 56.87 (C-2), 79.27 and 83.15 (2× (CH₃)₃C), 128.57, 132.64 and 133.18 (Ar-CH), 136.52 (Ar-C), 153.32, 156.19 and 163.58 (2× C=O and C=N), 190.53 (C=O ketone). Characteristic signals for 22: 27.98 and 28.18 ($2 \times (CH_3)_3C$), 30.67 ($CH_2C=C$), 49.75 (CH_2N), 126.50 (C=CC=O), 148.00 (C=CC=O). HRMS calculated for C₂₃H₃₃N₃O₅ 431.2420, found 431.2413.

3-Phenyl-4a,5,6,7-tetrahydro-2H-pyrrolo[1,2-c]pyrimidin-1-ylideneamine Hydrochloride (23). To a solution of 21 with a trace of 22 (67.0 mg, 0.155 mmol) in 0.5 mL of MeOH was added 1.0 mL of

a 7.3 M solution of HCl in MeOH (7.3 mmol). After stirring at room temperature for 4 h, evaporation of the volatiles gave **23** (38.3 mg, 0.153 mmol, 99%) as a light brown solid. IR (KBr) 3400, 2960, 2860, 1655, 1620, 1540, 760, 690. ¹H NMR (400 MHz, DMSO- d_6) 1.69-1.77 (m, 1H), 1.93-2.03 (m, 2H), 2.27-2.33 (m, 1H), 3.56-3.60 (m, 2H, H-7), 4.39-4.43 (m, 1H, H-4a), 5.56 (d, J = 1.7 Hz, 1H, H-4), 7.42-7.50 (m, 3H, Ar-H), 7.65-7.67 (m, 2H, Ar-H), 8.11 (br s, 2H, NH), 10.12 (br s, 1H, NH). ¹³C NMR (50 MHz, DMSO- d_6), 27.19 (C-6), 37.15 (C-5), 51.11 (C-7), 61.74 (C-4a), 105.48 (C-4), 130.31, 133.73 and 134.30 (Ar-CH), 137.17 and 138.62 (Ar-C and C-3), 156.00 (C-1). HRMS-FAB [M-CI]⁺ calculated for C₁₃H₁₆N₃ 214.1344, found 214.1321. Anal. Found: C, 61.78; H, 6.64; N, 16.49. Calculated for C₁₃H₁₆N₃Cl C, 62.52; H, 6.46; N, 16.83.

Guanylation of 19. To a solution of 19 (49.5 mg, 0.258 mmol) in 0.5 mL of DMF were added at 0 °C N,N'bis-(tert-butoxycarbonyl)-thiourea (71.4 mg, 0.258 mmol), HgCl₂ (70.1 mg, 0.258 mmol) and Et₃N (120 μL, 0.86 mmol) in succession. The mixture was stirred at 0 °C for 30 min. After warming to room temperature the reaction mixture was stirred for an additional 18 h, diluted with EtOAc (5 mL) and filtered through a path of celite. Water (5 mL) and a saturated aqueous solution of NaCl (5 mL) were added to the filtrate and the mixture was extracted with EtOAc (4 times 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was dissolved in Et₂O/hexanes 1:1 (10 mL), poured out into a saturated aqueous solution of NaHCO₃ (5 mL) and was extracted with Et₂O/hexanes 1:1 (4 times 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:3) gave two fractions. The first fraction consisted of E-N,N'-Bis-Boc-N"-(6-oxo-non-4-enyl)-guanidine (25) (17.7 mg, 0.0445 mmol, 17%) as a light yellow oil. Rf 0.35 (EtOAc/hexanes 1:3). ¹H NMR (400 MHz) 1.92 (t, J 7.4 Hz, 3H, CH₃), 1.48 (s) and 1.49 (s, 18H, 2× (CH₃)₃C), 1.55-1.67 (m, 2H), 1.72-1.79 (m, 2H), 2.25-2.30 (m, 2H), 2.50 (t, J = 7.4 Hz, 2H, CH₂C=O), 3.43-3.49 (m, 2H, CH₂N), 6.12 (dd, J = 1.4, 15.9 Hz, 1H, CH=CHC=O), 6.80 (dt, J = 6.8, 15.9 Hz, CH=CHC=O), 8.36 (br s, 1H, NH), 11.49 (br s, 1H, NH). ¹³C NMR (100 MHz) 13.78 (CH₃), 17.60 (CH₂), 27.62 (CH₂), 28.03 and 28.26 (2× (CH₃)₃C), 29.65 (CH₂), 40.14 (CH₂), 42.09 (CH₂), 79.33 and 83.19 (2× (CH₃)₃C), 30.90 and 145.30 (CH=CH), 153.31 and 156.17 (C=O and C=N), 200.46 (C=O ketone). The second fraction consisted of N,N'-diBoc-1-[1-(amino-iminomethyl)-pyrrolidin-2-yl]-pentan-2-one (24) (83.8 mg, 0.211 mmol, 82%, 82:18 mixture of 24 and 25) as a colourless oil. Rf 0.30 (EtOAc/hexanes 1:3). IR 2980, 2930, 2870, 1740, 1710, 1600. ¹H NMR (400 MHz, 82:18 mixture of 24 and 25) 0.89 (t, J = 7.4 Hz, 3H, CH₃), 1.43-2.51 (m, 27H, including characteristic signal for (CH₃)₃C: 1.46 (s)), 3.28-3.61 (m, 3H), 4.45-4.55 (m, 1H, H-2), 10.2 (br s, 1H, NH). ¹³C NMR (100 MHz, 82:18 mixture of 24 and 25) 13.66 (CH₃), 17.59 (CH₂), 28.12 (2× (CH₃)₃C), 31.43 (CH₂), 40.14 (CH₂), 45.18 (CH₂), 46.38 (CH₂), 49.63 (CH₂), 55.58 (C-2), 79.29 and 83.17 (2× (CH₃)₃C), 156.17 and 163.54 (C=O and C=N), 209.49 (C=O ketone). HRMS-FAB [M+H]⁺ calculated for C₂₀H₃₆N₃O₅ 398.2655 found 398.2649.

Deprotection of 24 and 25. To a solution of 24 and 25 (38.2 mg, 0.0961 mmol, 68:32 mixture) in 0.5 mL of MeOH was added 0.5 mL of a 7.3 M solution of HCl in MeOH (3.6 mmol). After stirring at room temperature for 4 h, evaporation of the volatiles gave a mixture of 3-propyl-4a,5,6,7-tetrahydro-pyrrolo[1,2-c]pyrimidin-1-ylamine (26), E,Z-3-propylidene-3,4,4a,5,6,7-hexahydro-pyrrolo[1,2-c]pyrimidin-1-ylamine (27) and 1-amino-3-propyl-3,4,4a,5,6,7-hexahydro-pyrrolo[1,2-c]pyrimidin-3-ol (28) (19.3 mg, 0.0885 mmol, 93%) as a colourless solid. IR (CHCl₃) 3300, 3140, 2960, 1650. ¹H NMR (400 MHz, DMSO- d_6 , complex mixture of 5 guanidines) 0.87-0.98 (m, 3H, CH₃, characteristic signals: 0.89 (t, J =7.3 Hz), 0.96 (t, J = 7.4 Hz)), 1.46-1.67 (m), 178-2.43 (m), 2.70 (dd, J = 3.0, 14.0 Hz), 3.05 (dd, J = 3.1, 1.0 Hz) 14.8 Hz), 3.38-3.58 (m), 4.18-4.21 (m), 4.58 (t, J = 6.9 Hz) and 4.83 (s) and 4.98 (t, J = 7.3 Hz, CH=C, rel. intensities 47:36:17, respectively), 7.47 (br s) and 7.60 (br s) and 7.79 (br s, 2H, NH₂), 9.61 (br s, 0.14H, NH), 9.81 (br s, 0.32H, NH), 10.02 (br s, 0.41H, NH), 10.22 (br s, 0.13H, NH). ¹³C NMR (100 MHz, DMSO-d₆, complex mixture of 5 guanidines) 12.51, 13.15, 13.88, 14.04 and 14.64 (CH₃), 18.42, 18.80, 19.33, 20.64, 22.07, 22.19, 22.86, 22.90, 26.91, 30.75, 31.49, 31.58, 32.24, 32.40, 32.93, 45.93, 46.08 and 46.35 (CH₂), 55.07, 55.85, 56.59 and 58.73 (CH), 98.73, 109.76 and 110.53 (CH=C), 110.44, 124.01, 127.40, 129.02 and 134.48 (C_a), 149.54, 149.81, 150.21 and 150.61 (NCN). MS(FAB) 198 (7.4%), 180 (100%). HRMS-FAB [M-Cl]⁺ calculated for C₁₀H₂₀N₃O 198.1606 found 198.1612. HRMS-FAB [M-Cl]⁺ calculated for C10H18N3 180.1501 found 180.1524.

Attempted reaction of 14 with bis-Boc-thiourea. To a solution of bis-Boc-thiourea (124 mg, 0.448 mmol), in 0.3 mL of DMF were added at 0 °C HgCl₂ (122 mg, 0.449 mmol) and Et₃N (125 μ L, 0.88 mmol) in succession. The mixture was stirred at 0 °C for 30 min. 14 (93.5 mg, 0.422 mmol) in 0.5 mL of DMF and Et₃N (65 mL, 0.47 mmol) were added, successively, and the mixture was stirred at 0 °C for 30 min. After warming to room temperature the reaction mixture was stirred for an additional 18 h, diluted with EtOAc (5 mL) and filtered

through a path of celite. Water (5 mL) and a saturated aqueous solution of NaCl (5 mL) were added to the filtrate and the mixture was extracted with EtOAc (4 times 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The mixture was subjected to flash chromatography. Gradient elution (EtOAc/hexanes 1:5, 1:2, then EtOAc/MeOH 95:5) gave unidentified products. Elution with (EtOAc/MeOH 3:1) afforded **29** (18.7 mg, 0.079 mmol, 37%) as a light yellow oil. $R_f 0.4$ (EtOAc/MeOH 3:1).

4-Methyl-1,2,3,5a,6,7,8,8b-octahydro-3a,8a-diaza-as-indacene-5-carboxylic Acid Methyl Ester (29). To a solution of 12 (81.2 mg, 0.285 mmol) in 0.5 mL of MeOH was added 1.5 mL of a 4.7 M solution of HCl in MeOH (4.7 mmol). After stirring at room temperature for 3.5 h, the mixture was concentrated in vacuo. The residue was dissolved in 2.0 mL of THF and Et₃N (50 µL, 0.36 mmol) was added. After stirring at room temperature for 15 min the mixture was concentrated in vacuo. Flash chromatography (EtOAc/hexanes 3:1) and short evaporation in vacuo afforded a mixture of methyl acetoacetate and 29 (40.5 mg, 1:2 mixture according to ¹H NMR). Methyl acetoacetate identified by TLC and signals in spectra: ¹H NMR (400 MHz, 2:1 mixture of 29 and MAA) 2.24 (s, 3H, CH₃), 3.43 (s, 2H, CH₂), 3.71 (s, 3H, CH₃O). ¹³C NMR (100 MHz, mixture of 29 and MAA) 30.09 (CH₃), 49.77 (CH₂), 52.29 (CH₃O), 167.48 (C=O) (C=O ketone not observed). Prolonged evaporation in vacuo afforded 29 (32.4 mg, 0.137 mmol, 96%) as a colourless oil. R_f 0.1 (EtOAc/hexanes 3:1). IR 2940, 2870, 2800, 1700, 1550, 1430. ¹H NMR (400 MHz) 1.56-1.65 (m, 1H), 1.73-1.88 (m, 4H), 1.90-2.01 (m, 1H), 2.08-2.18 (m, 1H), 2.21-2.29 (m, 1H), 2.34 (s, 3H, CH₃), 2.61-2.67 (m, 2H), 3.34-3.54 (m, 2H), 3.61 (s, 3H, CH₃O), 3.87-3.90 (m, 1H) and 4.25-4.29 (m, 1H, H-5a and H-8b). ¹³C NMR (100 MHz) 17.49 (CH₃), 22.54, 22.62, 29.81, 31.82, 45.05 and 47.26 (C-1, C-2, C-3, C-6, C-7 and C8), 60.95 and 74.61 (C-5a and C-8b), 96.41 and 153.90 (C-4 and C-5), 168.55 (C=O ester). HRMS calculated for C13H20N2O2 236.1524, found 236.1524.

2-(2-Hydroxy-1-methoxycarbonyl-propyl)-pyrrolidine-1-carboxylic Acid tert-Butyl Ester (32). To a solution of 12 (91.8 mg, 0.322 mmol) in 1.0 mL of AcOH at 0 °C was added 0.4 mL of a 0.95M solution of NaBH₃CN in THF (0.38 mmol). After stirring at room temperature for 30 min, the reaction mixture was poured out into a 2M aqueous solution of KOH (10 mL) and was extracted with CH₂Cl₂ (4 times 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 2:1) afforded 32 (91.3 mg, 0.318 mmol, 99%) as a light yellow oil. Rf 0.4 (EtOAc/hexanes 2:1). IR 3400, 2970, 2940, 2880, 1720, 1675, 1400, 1170. ¹H NMR (400 MHz, mixture of diastereomers and rotamers) 1.18-1.22 (m, 3H, CH₃), 1.27-2.00 (m, 13H, including characteristic signals for (CH₃)₃C: 1.40 (s), 1.41 (s) and 1.43 (s)), 2.30-4.95 (m, 9H, including characteristic signals for CH₃O: 3.64 (s), 3.67 (s) and 3.68 (s)). ¹H NMR (400 MHz, toluene- d_8 , 378K, mixture of diastereomers) 1.14 (d, J = 6.3 Hz), 1.18 (d, J = 6.5Hz) and 1.23 (d, J = 6.5 Hz, 3H, CH₃), 1.34-2.08 (m, 14H, including Characteristic signals for (CH₃)₃C: 1.39 (s), 1.41 (s) and 1.43 (s)), 2.58-3.58 (m, 6H, including: 2.59 (dd, J = 4.1, 8.3 Hz), 2.75 (dd, J = 3.7, 6.0 Hz), 2.88 (d, J = 9.2 Hz) and characteristic signals for CH₃O: 3.33 (s) and 3.40 (s)), 3.87-4.04 (m, 1H), 4.26-4.34 (m, 1H). ¹³C NMR (50 MHz, mixture of diastereomers and rotamers) 20.36, 21.53 and 22.35 (CH₃), 22.99 and 23.25 (C-4), 28.12 and 28.20 ((CH₃)₃C), 29.66 (C-3), 46.22 and 46.44 (C-5), 51.23, 51.38, 51.58, 53.79, 55.70, 56.06, 56.32, 56.89, 64.60, 65.78 and 67.16 (CH₃O, C-2, CHOH and CHCO₂CH₃), 79.26, 79.65 and 80.18 ((CH₃)₃C), 154.19, 154.39 and 156.53 (C=O), 171.84, 173.49 and 173.96 (C=O ester). HRMS calculated for C₁₄H₂₅NO₅ 287.1733, found 287.1736.

3-Hydroxy-2-pyrrolidin-2-yl-butyric Acid Methyl Ester Hydrogen Chloride (33). To a solution of **32** (54.4 mg, 0.189 mmol) in 0.5 mL of MeOH was added 0.5 mL of a 7.3 M solution of HCl in MeOH (3.7 mmol). After stirring at room temperature for 2.5 h, evaporation of the volatiles gave **33** (40.5 mg, 0.181 mmol, 96%) as a colourless oil. IR (CHCl₃) 3650, 3340. 2970, 2870, 1730. ¹H NMR (400 MHz, D₂O, mixture of diastereomers) 1.25 (d, J = 6.2 Hz), 1.31 (d, J = 6.8 Hz) and 1.34 (d, J = 6.6 Hz, 3H, CH₃), 1.70-2.40 (m, 4H), 2.86 (t, J = 8.9 Hz, 0.33H), 2.96 (dd, J = 3.2, 8.0 Hz, 0.33H), 3.01 (dd, J = 3.4, 7.1 Hz, 0.33H), 3.28-3.41 (m, 2H), 3.74-4.03 (m, 4H, including characteristic signals for CH₃O: **3**.79 (s), 3.80 (s) and 3.82 (s)),

4.14-4.21 (m, 0.66H), 4.30-4.36 (m, 0.33H). 13 C NMR (100 MHz, D₂O, mixture of diastereomers) 22.80, 23.44 and 23.50 (CH₃), 24.96, 25.80 and 25.94 (C-4), 30.98, 31.33 and 31.42 (C-3), 48.29, 48.56 and 48.65 (C-5), 54.72, 55.54, 55.70, 55.87 and 57.56 (CH₃O and CH), 61.11, 62.40 and 63.00 (CH), 68.51, 69.94 and 70.83 (CH), 175.35, 175.43 and 175.68 (C=O). HRMS [M-HCI] calculated for C₉H₁₇NO₃ 187.1208 found 187.1207.

N,N''-Bis-Boc-2-[1-(Amino-imino-methyl)-pyrrolidin-2-yl]-3-hydroxy-butyric Acid Methyl Ester (34). To a solution of 33 (194.4 mg, 0.869 mmol) in 1.25 mL of DMF were added at 0 $^{\circ}C$ N,N'-bis-(tert-butoxycarbonyl)-thiourea (252 mg, 0.91 mmol), HgCl₂ (248 mg, 0.91 mmol) and Et₃N (400 µL, 2.87 mmol) in succession. The mixture was stirred at 0 °C for 30 min. After warming to room temperature the reaction mixture was stirred for an additional 18 h, diluted with EtOAc (10 mL) and filtered through a path of celite. Water (10 mL) and a saturated aqueous solution of NaCl (10 mL) were added to the filtrate and the mixture was extracted with EtOAc (4 times 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residue was dissolved in Et₂O/hexanes 1:1 (10 mL), poured out into a saturated aqueous solution of NaHCO₃ (5 mL) and was extracted with Et₂O/hexanes 1:1 (4 times 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:5 then 1:2) gave three fractions. The first fraction consisted of (1*R**,5*R**,6*R**)-34a (136.4 mg, 0.318 mmol, 37%) as a white foam. $R_f 0.2$ (EtOAc/hexanes 1:2). Recrystallisation (EtOAc/hexanes 1:5) gave a sample of **34a** as white crystals, mp 122-123 °C. IR 3400, 2980, 2930, 1730, 1630, 1590. ¹H NMR (400 MHz, one diastereomer, rotamers) 1.22 $(d, J = 6.5 \text{ Hz}, 3H, \text{CH}_3), 1.44$ (s), 1.45 (s) and 1.48 (s, 18H, 2× (CH₃)₃C), 1.88-2.15 (m, 3H), 2.42-2.44 (m, 1H), 3.40-3.43 (m, 1H), 3.53-3.67 (m, 1H), 3.72 (s, 3H, CH₃O), 3.90-3.93 (m, 1H), 4.46 (br s, 1H), 5.03 (br s, 1H), 5.40 (br s, 1H), 10.49 (br s, 1H, NH). ¹³C NMR (50 MHz, one diastereomer) 20.22 (CH₃), 23.33 (C-4), 27.89 and 27.97 (2× (CH₃)₃C), 29.13 (C-3), 49.00 (C-5), 51.29, 56.77, 56.96 and 63.95 (CH₃O, C-2, CHOH and CHCO₂Me), 79.40 and 82.06 (2× (CH₃)₃C), 150.16, 156.10 and 161.59 (2× C=O and C=N), 171.27 (C=O ester). HRMS-FAB [M+H]⁺ calculated for C₂₀H₃₆N₃O₇ 430.2553 found 430.2491. Anal. Found: C, 55.78; H, 8.21; N, 9.81. Calculated for C₂₀H₃₅N₃O₇: C, 55.93; H, 8.21; N, 9.78. Crystallographic data for $(1R^*, 5R^*, 6R^*)$ -34a. Triclinic crystals, PI, a = 9.2828 (9), b = 9.8264 (8), c = 14.783 (1) Å, α = 109.322 (8), β = 92.351 (8), γ = 109.012 (7) °, V = 1183.8 (2) Å³, Z = 2, D_x = 1.21 gcm⁻¹ ³, λ (CuKα) = 1.5418 Å, μ (Cu-Kα) = 7.19 cm⁻¹, F(000) = 464, room temperature. Final R = 0.070 for 2935 observed reflections.²⁴ The second fraction consisted of 34a,b,c (59.6 mg, 0.139 mmol, 16%) mixture of 3 diastereomers as a colourless oil. The third fraction consisted of 34b,c (113.5 mg, 0.263 mmol, 30%) mixture of 2 diastereomers as a colourless oil. Rf 0.15 (EtOAc/hexanes 1:2). IR 3410, 2980, 2930, 2880, 1740, 1715, 1620, 1590. ¹H NMR (400 MHz, mixture of two diastereomers) 1.26 (d, J = 6.5 Hz, 3H, CH₃), 1.44 (s) and 1.47 (s, 18H, 2× (CH₃)₃C), 1.55-2.10 (m, 4H), 2.89-2.99 (m, 1H), 3.32-4.81 (m, 8H, including characteristic signals for CH₃O: 3.71 (s) and 3.74 (s)), 10.25 (br s, 1H, NH). 13 C NMR (63 MHz, D₁ = 10 s, mixture of diastereomers) 18.58 and 22.55 (CH₃), 22.84 (C-4), 28.14, 28.22 and 28.26 (2× (CH₃)₃C), 28.72 and 29.71 (C-3), 48.04 (C-5), 45.51, 51.75, 52.04, 52.96, 57.03 58.41, 65.86 and 73.68 (CH₃O and 3× CH), 78.36 and 79.55 (2× (CH₃)₃C), 153.14, 156.16, 159.44, 168.62 and 173.48 (3× C=O and C=N). HRMS-FAB [M+H]+ calculated for C₂₀H₃₆N₃O₇ 430.2553 found 430.2503.

E- and *Z*-*N*,*N*-Bis-Boc-2-Acetyl-6-guanidino-hex-2-enoic Acid Methyl Ester (35). To a solution of freshly distilled oxalyl chloride (9.8 μ L, 0.11 mmol) in 0.25 mL of CH₂Cl₂ at -78 °C was added DMSO (16 μ L, 0.23 mmol). After stirring at -78 °C for 2 min, a solution of **34** (44.3 mg, 0.103 mmol) in 125 μ L of CH₂Cl₂ was added, and the mixture was stirred at -78 °C for 5 min. Et₃N (57.5 μ L, 0.41 mmol) was added, the resulting mixture was stirred at -78 °C for 30 min, poured out into water (2.0 mL) and extracted with CH₂Cl₂ (4 times 5 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:1) afforded **35** and a trace of **36** (29.4 mg, 0.069 mmol, 67%) as a colourless oil. R_f 0.3 (EtOAc/hexanes 1:2). IR 3325, 3284, 3027, 3006, 2984, 2954, 2934, 1721, 1634, 1618, 1581. ¹H NMR (400 MHz, mixture of *E* and *Z* isomers of **35** and a trace of **36**) 1.46 (s), 1.47 (s) and 1.48 (s,

18H, $2 \times (CH_3)_3C$), 1.71-1.81 (m, 2H), 2.22-2.39 (m, 5H, including characteristic signals for CH₃: 2.31 (s) and 2.35 (s)), 3.40-3.52 (m, 2H, CH₂NH), 3.76 (s) and 3.82 (s, 3H, CH₃O), 6.87 (t, J = 7.7Hz) and 6.91 (t, J = 7.8 Hz, 1H, CH=C), 8.34 (br s, 1H, NH), 11.48 (br s, 1H, NH). Characteristic signals for **36**: 1.43 (CH₃)₃C), 2.21 (CH₃), 3.72 (CH₃O), 4.45 (br s, CH). ¹³C NMR (50 MHz, mixture of *E* and *Z* isomers of **35** and a trace of **36**) 26.58 (CH₂), 26.71 (CH₃), 27.21 and 27.72 (CH₂), 27.78 and 28.03 ($2 \times (CH_3)_3C$), 30.81 (CH₃), 39.54, 39.76 and 39.87 (CH₂), 51.92 (CH₃O), 79.03, 79.06, 82.90 and 82.94 ($2 \times (CH_3)_3C$), 135.60, 137.16 (Cq), 147.16 and 147.80 (CH=C), 153.03, 155.95, 155.99 163.31, 164.56, 166.42 (Cq), 194.77 and 200.27 (C=O ketone). Characteristic signals for **36**: 27.97 (CH₃)₃C), 31.89 (CH₂), 63.29 (CH), 79.35 (CH₃)₃C). HRMS-FAB [M+H]⁺ calculated for C₂₀H₃₄N₃O₇ 428.2397 found 428.2270.

1-Amino-3-methyl-4a,5,6,7-tetrahydro-pyrrolo[1,2-c]pyrimidin-4-carboxylic Acid Methyl Ester (37). To a solution of 35 with a trace of 36 (32.2 mg, 0.0753 mmol) in 0.5 mL of MeOH was added 1.0 mL of a 4.3 M solution of HCl in MeOH (4.3 mmol). After stirring at room temperature for 3 h, evaporation of the volatiles gave 37 (18.5 mg, 0.0753 mmol, 100%) as a colourless solid. IR (CHCl₃) 3300, 3022, 29784, 2360, 1682, 1635, 1540. ¹H NMR (400 MHz, DMSO-*d*₆) 1.51-1.67 (m, 1H), 1.87-1.96 (m, 2H), 2.20 (s, 3H, CH₃), 2.47-2.50 (m, 1H), 3.48-3.64 (m, 2H, H-7), 3.68 (s, 3H, CH₃O), 4.39 (dd, J = 4.2, 10.7 Hz, 1H, H-4a), 8.07 (br s, 2H, NH₂), 10.60 (br s, 1H, NH). ¹³C NMR (100 MHz, DMSO-*d*₆) 17.08 (CH₃), 21.49 (C-6), 32.87 (C-5), 46.47 (C-7), 51.20 (CH₃O), 56.99 (C-4a), 101.82 (C-4), 143.33 (C-3), 149.12 (C-1), 165.09 (C=O). HRMS-FAB [M-Cl]⁺ calculated for C₁₀H₁₆N₃O₂ 210.1243 found 210.1125.

3,3-Dimethoxy-2-pyrrolidin-2-yl-butyric Acid Methyl Ester (38). To a solution of 12 (58.7 mg, 0.206 mmol) in 200 μ L of MeOH were added trimethylorthoformate (200 μ L, 1.83 mmol) and 3 drops of a 2 M solution of H₂SO₄ in MeOH. After stirring at 50 °C for 3 h, 2 drops of a 2 M solution of H₂SO₄ in MeOH were added, and the solution was stirred at 50 °C for 3 h. Evaporation of the volatiles and quick flash chromatography (EtOAc, then EtOAc/MeOH = 3:1) over a short column afforded **38** (51.0 mg) as a colourless oil. **38** was immediately used in the next reaction. IR 3460, 3028, 3008, 2952, 2838, 1735, 1231, 1010. ¹H NMR (400 MHz, CDCl₃, mixture of 2 diastereomers) 1.44 (s) and 1.48 (s, 3H, CH₃), 1.54-1.70 (m, 1H), 1.84-2.15 (m, 3H), 3.08-3.45 (m, 8H, 2× CH₃O and H-5; including characteristic signals for CH₃O: 3.21 (s), 3.22 (s) and 3.26 (s)), 3.62-3.77 (m, 5H, CH₃OCO, H-2 and CHC=O; including characteristic signals for CH₃OCO: 3.69 (s) and 3.70 (s)), 6.80 (br s, NH). ¹³C NMR (100 MHz, mixture of 2 diastereomers) 18.27 and 18.65 (CH₃), 22.66 and 24.44 (C-4), 29.89 and 30.08 (C-3), 46.08 (C-5), 48.52, 48.57, 49.02 and 49.09 (2× CH₃O), 52.16, 52.27, 53.46 and 54.66 (CH₃OCO and CH), 58.22 and 58.41 (CH), 101.28 and 101.60 ((CH₃O)₂C), 169.88 and 171.85 (C=O). HRMS-FAB [M+H]⁺ calculated for C₁₁H₂₂NO₄ 232.1549 found 232.1524.

2-[1-(Amino-imino-methyl)-pyrrolidin-2-yl]-3,3-dimethoxy-butyric Acid Methyl Ester (39). To a solution of crude 38 (51.0 mg, 0.206 mmol) in 200 µL of DMF were added at 0 °C N,N'-bis-(*tert*-butoxycarbonyl)-thiourea (58.7 mg, 0.216 mmol), HgCl₂ (59.8 mg, 0.216 mmol) and Et₃N (100 µL, 0.72 mmol) in succession. The mixture was stirred at 0 °C for 30 min. After warming to room temperature the reaction mixture was stirred for an additional 18 h, diluted with EtOAc (5 mL) and filtered through a path of celite. Water (2 mL) and a saturated aqueous solution of NaCl (3 mL) were added to the filtrate and the mixture was extracted with EtOAc (4 times 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (EtOAc/hexanes 1:7, 1:5, then 1:1) gave two fractions. The first fraction consisted of (1S*,5S*)-39a (53.3 mg, 0.113 mmol, 55%) as a white solid. R_f 0.5 (EtOAc/hexanes 1:2). Recrystallisation (EtOAc/hexanes 1:5) gave a sample of 39a as white crystals, mp 127-128 °C. IR 3022, 2982, 1755, 1727, 1603, 1285, 1145. ¹H NMR (400 MHz) 1.10-1.55 (m, 22H, including characteristic signal for (CH₃)₃C): 1.36 (s) and 1.37 (s)), 1.77 (br s, 1H), 1.94-2.00 (m, 1H), 2.53 (br s, 1H), 3.09-3.33 (m, 8H, 2× CH₃O and H-2, including characteristic signal for CH₃O: 3.09 (s)), 3.55 (s, 3H, CH₃OCO), 3.97-4.01 (m, 1H, CH), 4.48 (br s, 1H, CH), 10.42 (br s, 1H, NH). ¹³C NMR (100 MHz) 19.03 (CH₃), 25.47 and 26.50 (C-3 and C-4), 27.90 and 28.01 (2× (CH₃)₃C), 47.92, 48.54, 49.02, 51.53 and 57.50 (3× CH₃O and 2× CH), 50.47 (C-5), 78.23

and 81.21 (2× (CH₃)₃*C*), 101.06 (*C*(OCH₃)₂), 149.45, 153.88 and 162.43 (2× C=O and C=N), 171.73 (C=O ester). HRMS-FAB [M+H]⁺ calculated for C₂₂H₄₀N₃O₈ 474.2815 found 474.2802. Anal. Found: C, 55.68; H, 8.32; N, 8.91. Calculated for C₂₂H₃₉N₃O₈: C, 55.80; H, 8.30; N, 8.87. **Crystallographic data for** (1*S*^{*},*5S*^{*})-*39a.* Monoclinic crystals, P2₁/c, a = 19.172 (1), b = 6.677 (1), c = 21.070 (2) Å, β = 97.533 (7) °, V = 2673.9 (5) Å³, Z = 4, D_x = 1.18 gcm⁻³, λ (CuK α) = 1.5418 Å, μ (Cu-K α) = 7.06 cm⁻¹, F(000) = 1024, room temperature. Final R = 0.057 for 2820 observed reflections.²⁴ The second fraction consisted of **39b** (27.5 mg, 0.058 mmol, 28%) as a colourless oil. *R*_f 0.2 (EtOAc/hexanes 1:2). IR 3025, 2983, 1747, 1601, 1286, 1238, 1147, 1130. ¹H NMR (400 MHz) 1.40-1.61 (m, 21H, including characteristic signal for (CH₃)₃C): 1.4 (s)), 1.81-2.01 (m, 3H), 2.13-2.15 (m, 1H), 2.96 (d, *J* = 9.5 Hz, 1H, CHCO₂Me), 3.15 (s) and 3.17 (s, 6H, 2× CH₃O), 3.38-3.72 (m, 6H, including characteristic signal for CH₃OCO: 3.64 (s)), 9.2 (br s, 1H, NH). ¹³C NMR (63 MHz, D₁ = 10 s) 18.17 (CH₃), 22.20 (C-4), 27.95 and 28.15 (2× (CH₃)₃C), 29.25 (C-3), 47.50 (C-5), 48.20 and 48.41 (2× CH₃O), 52.00, 54.00 and 58.34 (CH₃OCO and 2× CH), 83.28 ((CH₃)₃C), 101.53 (*C*(OCH₃)₂), 148.55, and 156.16 (2× C_q), 171.18 (C=O ester), (C_q not observed). HRMS calculated for C₂₂H₃₉N₃O₈ 473.2737 found 473.2712.

Deprotection of 39a. To a solution of **39a** (10.2 mg, 0.0215 mmol) in 0.25 mL of MeOH was added 150 μ L of a 9 M solution of HCl in MeOH (1.35 mmol). After stirring at room temperature for 4 h, evaporation of the volatiles gave **37** (5.0 mg, 0.0203 mmol, 94%) as a colourless solid.

Deprotection of 39b. To a solution of **39b** (8.7 mg, 0.0184 mmol) in 0.25 mL of MeOH was added 150 μ L of a 9 M solution of HCl in MeOH (1.35 mmol). After stirring at room temperature for 4 h, evaporation of the volatiles gave **37** (4.2 mg, 0.0171 mmol, 93%) as a colourless solid.

REFERENCES AND NOTES

- (a) Palagiano, E.; De Marino, S.; Minale, L.; Riccio, R.; Zollo, F.; Iorizzi, M.; Carré, J. B.; Debitus, C.; Lucarain, L.; Provost, J. *Tetrahedron* 1995, 51, 3675. (b) Tavares, R.; Daloze, D.; Braekman, J. C.; Hadju, E.; Muricy, G.; Van Soest, R. W. M. *Biochem. Syst. Ecol.* 1994, 22, 645. (c) Jares-Erijman, E. A.; Sakai, R.; Rinehart, K. L. J. Org. Chem. 1991, 56, 5712. (d) Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Bruno, I.; Riccio, R.; Ferri, S.; Spampinato, S.; Speroni, E. J. Nat. Prod. 1993, 56, 1007. (e) Jares-Erijman, E. A.; Ingrum, A. L.; Carney, J. R.; Rinehart, K. L.; Sakai, R. J. Org. Chem. 1993, 58, 4805. (f) Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Hallenga, K.; Ottinger, R.; Bruno, I.; Riccio, R. *Tetrahedron Lett.* 1990, 31, 6531. (g) Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Bruno, I.; Riccio, R.; Rogeau, D.; Amade, P. J. Nat. Prod. 1993, 56, 528. (h) Jares-Erijman, E. A.; Ingrum, A. A.; Sun, F.; Rinehart, K. L. J. Nat. Prod. 1993, 56, 2186. (i) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; De Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J. Org. Chem. 1995, 60, 1182.
- (a) Guanidines: Historical, Biological, Biochemical, and Clinical Aspects of the Naturally Occuring Guanidino Compounds; Mori, A.; Cohen, B. D.; Lowenthal, A., Eds.; Plenum: New York, 1983. Guanidines 2: Further Explorations of the biological and clinical Significance of Guanidino Compounds; Mori, A.; Cohen, B. D.; Koide, H. Eds.; Plenum: New York, 1987. (b) The Organic Chemistry of Drug Synthesis, Lednicer, D.; Mitscher, L. A.; Eds.; Wiley; New York, Vol. I (1977) and Vol. II (1980).
- (a) Fink, M. L.; Bodanszky, M. J. Am. Chem. Soc. 1976, 98, 974. (b) Dietrich, B. Fyles, D. L.; Lehn, J. M.; Pease, L. G.; Fyles, J. Chem. Soc. Chem. Commun. 1978, 934. (c) Cotton, F. A.; Day, V. W.; Hazen, Jr. E. E.; Larsen, S. J. Am. Chem. Soc. 1973, 95, 4834.
- Kashman, Y.; Hirsh, S.; McConnell, O. J.; Ohtani, I.; Kusumi, T.; Kakisawa, H. J. Am. Chem. Soc. 1989, 111, 8925.

- (a) Ohtani, I.; Kusumi, T.; Kakisawa, H.; Kashman, Y.; Hirsh, S. J. Am. Chem. Soc. 1992, 114, 8472.
 (b) Ohtani, I.; Kusumi, T.; Kakisawa, H. Tetrahedron Lett. 1992, 33, 2525.
- (a) Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc. 1995, 117, 2657. (b) Overman, L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58, 3235. (c) Snider, B. B.; Shi, Z. Tetrahedron Lett. 1993, 34, 2099. (d) Snider, B. B.; Shi, Z. J. Am. Chem. Soc. 1994, 116, 549. (e) Murphy, P. J.; Williams, H. L.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Chem. Commun. 1994, 119. (f) Murphy, P. J.; Williams, H. L. J. Chem. Soc., Chem. Commun. 1994, 819. (g) Grillot, A. L.; Hart, D. J. Tetrahedron 1995, 51, 11377.
- 7. Louwrier, S.; Ostendorf, M.; Boom, A.; Hiemstra, H.; Speckamp, W. N., preceding paper in this issue.
- (a) Somfai, P.; Åhman, J. Tetrahedron Lett. 1992, 33, 3791. (b) Åhman, J.; Somfai, P. Tetrahedron 1992, 48, 9537.
- 9. Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172.
- 10. Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata, K.; Makino, A. J. Org. Chem. 1984, 49, 300.
- 11. Sakaitani, M.; Hori, K.; Ohfune, Y. Tetrahedron Lett. 1988, 29, 2984.
- (a) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. J. Org. Chem. 1992, 57, 2497. (b) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. Tetrahedron Lett. 1993, 34, 3389. (c) Drake, B.; Patek, M.; Lebl, M. Synthesis 1994, 579.(d) Verdini, A. S.; Lucietto, P.; Fossati, G.; Giordiani, C. Tetrahedron Lett. 1992, 33, 6541. (e) For the corresponding bis-methoxycarbonyl derivative see: Shawkat Naim, S.; Sharma, S. Synthesis 1992, 664. (f) Bergeron, R. J.; McManis, J. S. J. Org. Chem. 1987, 52, 1700. (g) Poss, M. A.; Iwanowicz, E.; Reid, J. A.; Lin, J.; Gu, Z. Tetrahedron Lett. 1992, 33, 5933. (h) Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677. (i) Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677.
- 13. (a) Snider, B. B.; Faith, W. C. Tetrahedron Lett. 1983, 24, 861. (b) Snider, B. B.; Faith, W. C. J. Am. Chem. Soc. 1984, 106, 1443.
- 14. A Michael reaction can be reversible: Jung, M. E. in *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991, Vol. 4, Chapter 1.1 (pp 3).
- For other retro-Michael reactions see: (a) Collins, D. J.; Fallon, G. D.; Skene, C. E. Aust. J. Chem. 1994, 47, 649. (b) Kitano, K.; Katagiri, N.; Kaneko, C. Chem. Lett. 1994, 1285.
- A Mannich reaction can be reversible: (a) Tramontini, M. Synthesis 1973, 703. (b) Tramontini, M.; Angiolini, L. Tetrahedron 1990, 46, 1791.
- For other retro-Mannich reactions see: (a) Arai, H.; Kasai, M. J. Org. Chem. 1994, 59, 1087. (b) Schleimer, R.; Würthwein, E. U. Chem. Ber. 1994, 127, 1427. (c) Feldman, P. L.; Rapoport, H. J. Org. Chem. 1986, 51, 3882.
- 18. Gribble, G. W.; Nutaitis, C. F. Org. Prep. Proc. Int. 1985, 17, 317.
- (a) Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480. (b) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
- (a) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639. (b) Taylor, E. C.; Ahmed, A. J. Org. Chem. 1991, 56, 5443. (c) Griffith, W. P.; Ley, S. V.; Whitecombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.
- (a) Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899. (c) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. (d) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156.
- 22. Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 43, 8019.
- 23. Iwanowicz, E. J.; Poss, M. A.; Lin, J. Synth. Commun. 1993, 23, 1443.
- 24. Experimental details of the X-ray structure determinations, ORTEP representations and tables of fractional atomic coordinates, thermal parameters, interatomic distances and angles for **34a** and **39a** were deposited by the Editor at the Cambridge Crystallographic Data Centre.

(Received in UK 10 November 1995; accepted 14 December 1995)