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Catalytic cycloadditions via metal carbene intermediates have
been extensively studied, and a number of efficient methods are
available." However, the majority of reports involve cycload-
ditions with electron-rich unsaturated compounds because of the
electrophilic nature of metal carbene intermediates.' Recently,
several notable examples employing electron-deficient unsatur-
ated compounds were reported.? > For cyclopropanations of
electron-deficient alkenes with diazo compounds, Ru(II)/salen?
or Co(IT)/porphyrin® complex-catalyzed reactions were reported.
For cycloadditions of electron-deficient alkenes,* alkynes,™" and
allenes® with Fischer carbene complexes, Ni(0)-catalyzed
cyclopropanations* and Rh(I)-catalyzed [3 + 2] cycloadditions®
were reported. As an alternative method for the generation of
metal carbene intermediates that is convenient as well as atom-
economical, the 1,2-acyloxy rearrangement of terminal propargyl
esters leading to alkenylcarbene intermediates catalyzed by
Pd(I1),° Ru(I),” and Au(I)® complexes was developed, while
cycloaddition partners are limited to electron-rich unsaturated
compounds.® Here we describe cationic rhodium(I) complex-
catalyzed [3 + 2]'° and [2 + 1] cycloadditions of propargyl
esters with electron-deficient alkynes and alkenes.

Our research group recently reported the cationic Rh(I)/(R)-
Segphos [5,5’-bis(diphenylphosphino)-4,4’-di-1,3-benzodioxole]-
catalyzed enantio- and diastereoselective cotrimerization of
electron-rich alkenes and diethyl acetylenedicarboxylate, leading
to furylcyclopropanes presumably through carbonyl-stabilized
cationic Rh(I) carbene intermediate A (eq 1):"'
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This result indicates the nucleophilic nature of Rh(I) carbene
A.

On the other hand, it is well-known that the electrophilic
cationic Rh(I) complex is able to activate alkynes through the
formation of a complex with the 7z electrons of the alkyne triple
bond.'? Thus, we anticipated that the cationic Rh(I) complex
would react with an alkoxycarbonyl-substituted propargyl ester
to generate the carbonyl-stabilized cationic Rh(I) carbene
intermediate B via the 1,2-acyloxy rearrangement; B would then
react with diethyl acetylenedicarboxylate to yield the corre-
sponding furan or cyclopentadiene through the [3 + 2] cycload-
dition of the carbonyl or alkene moiety of B (eq 2):
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Table 1. Rhodium-Catalyzed [3 + 2] Cycloaddition?

R! CO,R® 5mol % \ COLR5
2 Rh(cod),]SbF, R
R comt + || [Rh(cod);]SbFg ; COLRS
3 CHoCly, 1t R
R3CO, s
CO.R 72h R3CO, CO,R*
1a-h 2a—c (2 equiv) 3
COzEt CO,i-Pr COzMe
Me, CO,E Me, COi-Pr Me, COMe
Me’ Me Me
AcO COMe AcO COzMe AcO COzMe
3aa 81% yield 3ab 62% yield 3ac 69% yield?®
COEt COE COHEt
Me, CO,E Me, CO,E Me, COE
Me’ Me Me'
AcO COLEt AcO CO,i-Pr BzO CO,Me
3ba 79% yield 3ca 68% yield® 3da 90% yield
) COgEt COgEt COEt
A\, COEt Me, COE Me COE
i-Pr
AcO COzMe AcO COzMe BzO CO,Me

3ea (n = 1) 67% yield
3fa (n=2)81% yield

3ga 50% yield® 4ha 74% yield?

“[Rh(cod),]SbFs (0.025 mmol), 1la—h (0.50 mmol), 2a—c (1.00
mmol), and CH,Cl, (1.0 mL) were used. Cited yields are of isolated
products. © Catalyst: 10 mol %. ¢ At 40 °C. ¢ Determined by 'H NMR
spectroscopy because of the instability of the product toward silica gel
chromatography.
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It was also expected that the alkoxycarbonyl group would
facilitate the regioselective 1,2-migration of the acyloxy group
because of the electronic polarization of the alkyne triple bond.'?

We first examined the reaction of methoxycarbonyl-substituted
propargyl ester 1a and diethyl acetylenedicarboxylate (2a) at room
temperature using cationic Rh(I)/bisphosphine complexes, which
are effective for the reaction shown in eq 1, but no cycloaddition
product was generated. After screening catalysts and reaction
conditions,'* we were pleased to find that [Rh(cod),]SbF; effectively
catalyzed the [3 + 2] cycloaddition when excess 2a and high
concentration were employed, affording cyclopentadiene 3aa in
81% yield (Table 1). Not only diethyl but also diisopropyl and
dimethyl acetylenedicarboxylates reacted with 1a, giving cyclo-
pentadienes 3ab and 3ac, respectively, in good yields. With respect
to propargyl esters, a variety of tertiary propargyl esters reacted
with 2a to yield cyclopentadienes 3ba—ga in good yields.'
Furthermore, a secondary propargyl ester was able to react with
2a to yield the isomerized cyclopentadiene 4ha. Not only electron-
deficient alkynes 2 but also electron-deficient alkenes, acrylamides
5,' were suitable cycloaddition partners (Table 2). N,N-dimethyl-,
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Table 2. Rhodium-Catalyzed [2 + 1] Cycloaddition?
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\)—: COxR* * 7 RS o
RYCO 2 Y CHiClp 40°C  RZ " ~COR*
2 0 72h R3CO,
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o o o
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N NP N
Me” " TCOMe Me” " ~CO,Me Me” " YCOMe
AcO AcO AcO
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Me Y I\NMez Me LNMe2 Me Y LNMe2
Me)\““ CO,Et Me” X" CO,iPr Me)\“’ COMe
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o o
{ ] {
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X, Y X,
" NCOMe PN NCoMe Me™ " Co,Me
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6ea (n = 1) 46% yield

6ga 43% yield (£/Z = 1:3)°

6ha 0% yield

6fa (n=2) 11% yield

“ [Rh(cod),]SbF¢ (0.025 mmol), 1la—h (0.50 mmol), 5a—c¢ (1.00
mmol), and CH,Cl, (1.0 mL) were used. Cited yields are of isolated
products. ? Catalyst: 10 mol %.
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N-methyl-N-phenyl-, and N,N-diphenylacrylamides reacted with 1a
at 40 °C to give cyclopropanes 6aa—ac in good yields with perfect
diastereoselectivity. The cyclopropanation of acrylamide 5a with
a variety of tertiary propargyl esters proceeded to afford cyclopro-
panes 6ba—ea and 6ga in good yields as single diastereomers, while
exo-alkylidenecyclohexane 6fa was generated in low yield and a
secondary propargyl ester failed to react with Sa.

A plausible mechanism for the formation of 3aa and 6aa is
shown in Scheme 1. A metalla-Diels—Alder reaction®'” of alk-
enylcarbene D with 2a furnishes rhodacycle E, and subsequent
reductive elimination yields 3aa. According to the proposed
mechanism of the [3 + 2] cycloaddition of diazoacetates with
alkynes to give furans,'® the formation of furan 7aa through
intermediates F, (2)-G, and H would also be possible. The metalla-
Diels—Alder reaction rather than the [2 + 2] cycloaddition of
Rh(I)*/cod alkenylcarbene D with 2a proceeds preferentially under
the present reaction conditions, which might account for the
observed chemoselective formation of 3aa rather than 7aa. Indeed,
the Rh(I)*/cod complexes failed to catalyze the cycloaddition of

ethyl diazoacetate (9) with 2a, while the Rh(I)*/bisphosphine
complex did catalyze the cycloaddition (eq 3):

COoEt
N> 10 mol % Rh catalyst 1020\ A
PN + 2a <° @
H” “CO,Et (2 equiv) CH,Cly, 1t H
N 24 10 OEt
[Rh(cod),]BF 4/Segphos 14%

[Rh(cod)3BF 4 or [Rh(cod)]SbFs 0%

The formation of 3aa through intermediates F, (E)-G, and I might
also be excluded as a result of the stable Rh—O chelation in (2)-G
and the absence of possible -hydride elimination product 8aa. On
the other hand, the [2 + 2] cycloaddition of intermediate D with
Sa furnishes rhodacyclobutane J. Subsequent reductive elimination
yields 6aa. Trans chelation of the ester and amide carbonyl groups
to the cationic rhodium in intermediate J might account for the
observed perfect diastereoselectivity.'?->° Chelation of the alkenyl-
acetate carbonyl group might be excluded because of the equilibra-
tion between intermediates C and D.'**®

Future work will focus on further investigations into mechanistic
insights and applications in organic synthesis.
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