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ABSTRACT: A novel cationic [IrH(THF)(P,N)(imine)] [BArF] 
catalyst containing a P-stereogenic MaxPHOX ligand is described 
for the direct asymmetric hydrogenation of N-methyl and N-alkyl 
imines. This is the first catalytic system to attain high 
enantioselectivity (up to 94% ee) in this type of transformation. The 
labile THF ligand allows for effective activation and reactivity, 
even at low temperatures. DFT calculations allowed the 
rationalization of the stereochemical course of the reaction. 

Chiral N-methyl or N-alkyl amine is a frequent pharmacophore 
in pharmaceutical substances (Figure 1). Examples include 
sertraline (to treat depression),1 dextro-methamphetamine (to treat 
ADHD and narcolepsy),2 rivastigmine (to treat Alzheimer’s and 
Parkinson’s diseases)3 and cinacalcet (to treat 
hyperparathyroidism).4 Due to the importance of this moiety, many 
efforts have been devoted to the asymmetric synthesis of optically 
pure N-methyl amines.5 An ideal methodology to obtain this class 
of compounds is the catalytic reduction of the corresponding 
imines. However, the high basicity and nucleophilicity of N-methyl 
amines often results in catalyst deactivation. The most successful 
approaches for the asymmetric reduction of N-methyl imines are 
Ti-catalyzed hydrosilylation, reported by Buchwald,6a and 
Brönsted acid-catalyzed reduction using Hantzsch ester in the 
presence of Boc2O, reported by List.6b In both cases, the final amine 
product is protected with either a SiR3 or Boc group, thus 
circumventing the basicity issue associated with the free amine. 

From an industrial perspective, the direct hydrogenation of 
imines is a much more desirable process;7 however, in contrast to 
the good results obtained with N-aryl ketimines,8,9 the 
hydrogenation of N-methyl ketimines has not yet been achieved 
with useful levels of enantioselectivity. Pfaltz and co-workers 
reported the hydrogenation of the N-methyl imine of acetophenone 
with Ir-PHOX catalysts, achieving only 58% ee (Scheme 1).10 The 
conversion was complete, but harsh pressures of hydrogen (100 
bar) and high catalyst loadings (4 mol%) were required. We 
hypothesize that this difference between N-aryl and N-alkyl 
ketimines is due to the aforementioned basicity of this class of 
compounds. Here we report a novel type of Ir(III) precatalyst that 
can be used directly in hydrogenation reactions and that has 
allowed the direct hydrogenation of N-methyl and N-alkyl imines 
in mild conditions and with high levels of selectivity (Scheme 1). 
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Figure 1: Chiral N-methyl and N-alkyl amine pharmaceuticals. 

Scheme 1. Background vs. present work on the direct 
asymmetric hydrogenation of N-methyl imines. 
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We have recently reported that cationic Ir(I)-MaxPHOX catalysts 
are highly active and selective in the hydrogenation of N-aryl 
imines.11,12 Here we tested whether these catalysts are also effective 
for N-methyl imine substrates (Table 1). The initial attempts to 
reduce the model N-methyl imine with four distinct diastereomers 
of Ir-MaxPHOX catalysts (1-4) were disappointing (Table 1, 
entries 1-4). A maximum enantiomeric excess of 71% was obtained 
with catalyst 2, but with only 41% conversion. In 2013, Pfaltz and 
co-workers reported that the catalyst in the hydrogenation of N-aryl 
imines is an iridacycle that forms upon reaction with the imine 
substrate.13 We have previously isolated and characterized 
cyclometallated [IrHCl(MaxPHOX)(imine)] complexes.11 With 
this in mind, we hypothesized that, with the addition of the proper 
cyclometallating agent, a novel iridacycle would show an enhanced 
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capacity to reduce N-methyl imines. After testing a wide array of 
cyclometallating substances (A1-A15, see SI), we identified 
acetophenone N-phenyl imine (A5) as the best additive. Indeed, the 
addition 2 mol % of A5 dramatically improved the reaction 
outcome with respect to both the conversion and selectivity (Table 
1, entries 5-8). The best result was obtained with catalyst 1, 
achieving an unprecedented 90% ee (Table 1, entry 5). 

Table 1. Catalyst optimization.a

N HN

H2, 3 bar
DCM

1 mol% cat.
*

HN
P
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N

O
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HN
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Catalysts:

Additive

CH3

N

A5

Entry Cat. Additivea Conv. (%)b ee (conf.)c

1 1 - 100 13(R)
2 2 - 41 71(S)
3 3 - 100 9(R)
4 4 - 6 11(R)
5 1 A5 100 90(S)
6 2 A5 100 61(S)
7 3 A5 100 78(R)
8 4 A5 36 86(R)

a) 2 mol% of additive was added prior to the addition of the 
imine substrate. b) Conversion was determined by 1H NMR. c) 
Enantiomeric excess was determined by chiral HPLC analysis of 
the corresponding trifluoroacetate. Absolute configuration was 
determined by optical rotation of the free amine. 

To achieve a reliable and robust method applicable in large- or 
even industrial-scale reactions, it would be desirable to isolate a 
catalyst that can be used directly in hydrogenation reactions. As 
mentioned above, neutral cyclometallated Ir(III)HCl complexes 
have been prepared and isolated; however, these complexes require 
activation by the addition of NaBArF.11,13 We envisaged that an 
active precatalyst could be achieved if the reactive coordination site 
was stabilized with a transient ligand. To this end, complex 1 was 
reacted, in the presence of hydrogen, with acetophenone N-phenyl 
imine (A5), and the resulting complex was treated with several 
stabilizing ligands (Table 2). The use of CH3CN, Ph3P and Me3P as 
ligands provided a single stereoisomer of the corresponding 
cationic octahedral Ir(III) complexes 5-7, as shown by 1H and 31P 
NMR spectra. Pressurization with ethylene gas (3 bar) afforded 
complex 8, also as a single stereoisomer. However, 8 did not 
contain an ethylene ligand but a solvent molecule instead (Table 2, 
entry 4). As expected, complex 8 could be synthesized without the 
addition of ethylene, interestingly, the resulting complex was of 
lower purity, as determined by 1H NMR spectroscopy (see SI). We 
hypothesized that ethylene assists in the isomerization of 
intermediate unsaturated species to yield the final compound. To 
our delight, complexes 5-8 are stable solids that can be handled in 
air and stored under nitrogen (see SI for X-ray structure of 7). 

Table 2. Synthesis of Ir(III)H cyclometallated catalysts.

HN
P

Ir
N

O

Me iPr

iPr BArF

1

1) H2, A5
2) L Ir

X

P N

O

iPr

HN

iPr

Me

tBu
H

N
Ph

BArF

THF

Entry Added L Yield (%) X Complex
1 CH3CN 92 CH3CN 5
2 Ph3P 94 Ph3P 6
3 Me3P 96 Me3P 7
4 Ethylene 98 THF 8

Table 3: Catalysis with cyclometallated Ir(III)H catalysts. 

N HN

H2 (3 bar), DCM

cat. 1 mol %

Entry cat. T (°C) Conv. (%)a ee (%)b

1 5 rt 100 85
2 6 rt 0 -
3 7 rt 100 90
4 8 rt 100 91
5 7 0 0 -
6 8 0 100 91

a) Conversion was determined by 1H NMR. b) Enantiomeric 
excess was determined by chiral HPLC analysis of the 
corresponding trifluoroacetate. 

Complexes 5-8 were used as catalytic precursors in the 
hydrogenation of acetophenone N-methyl imine (Table 3). We 
found that complexes containing CH3CN (5), PMe3 (7) and THF 
(8) provided 100% conversion at room temperature while the 
catalyst containing a PPh3 (6) proved inactive (Table 3, entry 2). 
Catalysts 7 and 8 provided the best selectivity, 90 and 91% ee 
respectively, which parallels that achieved with the catalyst 
generated in situ (Table 3, entries 3 and 4). When the reaction 
temperature was lowered to 0 °C, complex 8 maintained its activity, 
while the Me3P analog (7) was no longer active (Table 3, entries 5 
and 6). We assumed that, in the presence of hydrogen, the solvent 
fragment in 8 is quickly released, thereby allowing faster 
activation.14

Using catalyst 8, we next addressed the hydrogenation of several 
N-methyl and N-alkyl ketimines. The results are summarized in 
Figure 2. Full conversions were obtained in all cases. Reactions at 
low temperature (0–10°C) generally produced higher selectivity. 
Imines derived from 4- and 3-methoxyacetophenone were less 
reactive. In this regard, the hydrogenation had to be conducted at 
room temperature and the enantiomeric excesses for the 
corresponding amines were 91 and 89%, respectively. For the 
substrates containing electron-withdrawing groups (p-Cl, p-F and 
p-CF3), the temperature was decreased to ‒10 °C, which improved 
selectivity, allowing up to 93-94% ee. N-Methyl imine derived 
from -tetralone was hydrogenated, achieving 89% ee. Finally, 
excellent results were also obtained with imines derived from N-
propyl and N-isobutyl amine. This observation thus indicates that 
N-alkyl imines can be hydrogenated with high selectivity (92-94% 
ee).15
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Figure 2: Results for the hydrogenation of N-methyl and N-
alkyl imines using catalyst 8.a,b
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a) Hydrogenation reactions were run overnight in DCM at 3 bar 
of H2 with 1 mol % of 8 at the temperature listed. 100% conversion 
was obtained in all cases, as determined by 1H NMR. b) 
Enantiomeric excess was determined by chiral HPLC of the 
corresponding trifluoroacetamide. 

The hydrogenation of N-phenyl imines has been proposed to 
proceed through an outer-sphere mechanism.16 In order to 
understand the stereochemical course of the reaction a DFT 
mechanistic study using the B3LYP-D3 functional and including 
solvent effects has been performed in the present system (see SI for 
full details). The active catalyst is the iridium(III) hydride-
dihydrogen complex that results from the ligand exchange of THF 
with H2. The acidic dihydrogen complex protonates the imine-
substrate and leads to an iminium ion which is not bound to the Ir 
center. The stereodetermining step is the intermolecular hydride-
transfer from the resulting IrH2 to the activated substrate. This is a 
lose TS in which multiple orientations of the substrate are possible. 
A quadrant model that accounts for the possible orientations of the 
iminium ion is depicted in Figure 3a. The most favorable TS is the 
one where the phenyl ring of the substrate is placed in the SW 
quadrant (Figure 3b) and leads to the S enantiomer as observed 
experimentally. The most favorable TS leading to the R isomer is 
1.8 kcal mol-1 above with the phenyl group in the NW quadrant 
(Figure 3c). From these values the calculated enantiomeric excess 
is 90%, which is in close agreement with the experimental findings. 
Non-covalent interaction analysis17 shows that in the (S)-SW TS 
the phenyl group of the iminium ion generates a larger  
interaction surface than the (R)-NW TS (Figure 3b,c), thus leading 
to a more favorable transition sate. In support of this notion is the 
fact that the reduction of a purely aliphatic substrate like 
cyclohexylmethylketone N-methyl imine provided a racemate.18 

Figure 3: a) DFT computed quadrant model for the hydride 
transfer stereodetermining step. Transition state relative G‡ 
values for different orientations of the substrate phenyl group 
(in green: TSs leading to S isomer; in red: TSs leading to R 
isomer). The hydride transferred to the substrate is highlighted 
in magenta. b) Most favorable TS leading to S isomer, G‡ = 
0.0 kcal mol-1 (G‡ = 6.3 kcal mol-1 with respect to the iminium 
intermediate). c) Most favorable TS leading to R isomer, G‡ 
= 1.8 kcal mol-1. Color code for NCI analysis: red: repulsive, 
blue: attractive. 

In summary, we have described a novel cationic Ir(III)H catalyst 
that has allowed the first direct hydrogenation of methyl and alkyl 
imines in mild conditions and in high enantiomeric excess. The 
catalyst contains a P-stereogenic MaxPHOX ligand, a 
cyclometallated imine and a THF solvent molecule. The catalyst is 
a stable solid that can be stored under nitrogen. The THF ligand 
allows for fast and effective activation, even at reduced 
temperatures. DFT studies allowed to interpret the stereochemical 
course of the reaction. We think the findings reported herein 
contribute to advances in the development of hydrogenation 
iridium catalysts. 
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