Inorganica Chimica Acta 403 (2013) 53-62

Contents lists available at SciVerse ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Influential factors on assembly of first-row transition metal coordination polymers

Shi-Yao Yang^{a,*}, Hong-Bo Yuan^{a,b}, Xiao-Bin Xu^{a,c}, Rong-Bin Huang^a

^a Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
^b Shandong Career Development College, Shandong, Jining 272021, China

^c North Fujian Vocational and Technical College, Fujian, China

ARTICLE INFO

Article history: Available online 6 April 2013

Coordination Polymers Special Issue

Keywords: Metal centre Ion radius Benzene dicarboxylic acid Metal-organic framework Crystal engineering

ABSTRACT

Herein, twenty-seven coordination polymers were synthesised using Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺ and Zn²⁺ in organic solvents. Structural analyses show that metal ions are the most important factor that influences coordination polymer assembly. Metal ions determine the type of metal centre and structural topology. The organic ligand benzene dicarboxylic acid is the second most influential factor. Synthetic conditions are not key factors in this research system.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Coordination polymers have attracted intense research interest in recent years not only for their importance in chemistry [1–3] but also for their potential application in many areas [4–10]. Their most promising application is to be used as porous materials [11–15].

Coordination polymers comprise two parts: metal ions (inorganic) and ligands (in most cases, organic). Numerous metal ions are involved in coordination polymer assembly, and the first row transition metal ions are the best candidates because they are abundant and cheap with low toxicity. Such metal ions are also suitable for design and synthesis of low density porous materials given their relatively low atomic weight. Many highly porous coordination polymers (PCPs; also referenced as open metal-organic frameworks, MOFs) are assembled using Cu²⁺ or Zn²⁺ (a main group d¹⁰ ion) [16]. Moreover, most magnetic MOFs can be assembled by incorporating paramagnetic divalent first-row transition metals (Mn, Fe, Co, Ni and Cu) within distances sufficient for interaction [17]. The metal centre's structure and properties are extremely important in designing coordination polymers with various features [18]. It is critical to know when the metal ions tend to form discrete SBUs and when the infinite rod-shaped SBU (Secondary Building Unit) will be formed [19].

Most research has concentrated on design and synthesis of bridging ligands, which are the organic portion of coordination polymers [20–24]. Benzene polycarboxylic acids have been widely used for such studies. They can adopt various coordination modes, which have certain consequences for the product's structures and properties, and they often form highly stable MOFs [25–27]. Synthetic conditions, including *p*H value [28,29], temperature [30–33], solvents [34], and counter ions [35], also play an important role in synthesis. Polar organic solvents with a high boiling point, such as DMF (*N*,*N*-dimethylformamide), DEF (*N*,*N*-diethylformamide), and DMSO (dimethyl sulfoxide), are excellent solvents for reactants and can act as space-filling solvent molecules for porous MOFs [36,37]. We found that solvents and mixed solvent ratios can be used as media for adjusting the metal centres and structures in coordination polymers [38–41].

What is the decisive influential factor for assembly of first-row transition metal coordination polymers, and why are Cu^{2+} and Zn^{2+} over other metal ions so common in porous materials? To answer the above questions and to synthesise coordination polymers, we used the first-row transition metal ions Mn^{2+} , Co^{2+} , Ni^{2+} and Cu^{2+} as well as Zn^{2+} as the inorganic components; benzene dicarboxylic acids were the bridging ligands; and polar high-boiling-point organic compounds were the solvents (Table 1). Here, we report structural analyses for the twenty-seven products generated as well as the conclusions for our research.

^{*} Corresponding author. Tel.: +86 592 2186175; fax: +86 592 2183047. *E-mail address:* syyang@xmu.edu.cn (S.-Y. Yang).

^{0020-1693/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ica.2013.03.042

Table 1

Ligands and solvents used in this work.

_

Ligand or solvent	Name	Short name	Length (Å) and angle (°) between two carboxyls	
Short ligands	isophthalic acid	H2 ip	5.94, ~120	
	5-aminoisophthalic acid	H ₂ aip	6.03, ~119	
	5- <i>tert</i> -butylisophthalic acid	H₂ tbip	5.93, ~119	
	thiophenedicarboxylic acid	H ₂ tdc	6.44, ~153	
Medium ligands HO	terephthalic acid	H2 tp	6.93	
о он О ₂ N О	2-nitroterephthalic acid	H ₂ ntp	6.92	
он он	1,4-naphthalenedicarboxylic acid	H2 1,4-ndc	6.98, ~175	
	tetramethylterephthalic acid	H₂ tmtp	7.02	
Long ligands HO	2,6-naphthalenedicarboxylic acid	H2 2,6-ndc	9.15	
но с с с с с с с с с с с с с с с с с с с	biphenyldicarboxylic acid	H2 bpdc	11.22	
Solvents	N,N-dimethylformamide	DMF		
N N	N,N-dimethylacetamide	DMA		
~ ~~0	N-methyl-2-pyrrolidone	NMP		

2. Experimental

2.1. Methods

The synthesis procedure for the compounds was as follows. A solution comprising the metal salt and ligand in an organic solvent (or mixed solvent) was placed at room temperature or heated 0.2 °C min⁻¹ to a temperature in the range 70–140 °C and maintained at that temperature for approximately 4 days. Generally, the synthetic conditions for Mn or Zn compounds are similar, while Cu compounds are generated at lower temperatures. The products were collected by filtration and washed with pure solvents. The crystals produced were characterised using single X-ray crystallography, elemental analysis and Infrared spectrometry. IR spectra show strong bands in the range $1690-1500 \text{ cm}^{-1}$ (v_{as} stretching vibrations) and 1447–1340 cm⁻¹ (v_s stretching vibrations) for coordinated carboxylato groups, respectively. IR spectra also show weak bands at about 2930 for saturated C-H and 3100 for aromatic C-H vibrations, and broad peaks at about 3300 cm⁻¹ for water molecules.

2.1.1. $[Mn(ip)(dma)]_n$ **1**

A mixture comprising a Mn(NO₃)₂ 50% aqueous solution (0.77 g, 4.3 mmol) and H₂ip (0.249 g, 1.5 mmol) in 8 mL DMA was heated at 90 °C for 4500 min. Colourless block crystals were generated (0.350 g, 76% based on H₂ip). The elemental analysis (*Anal.* Calc.) for C₁₂H₁₃MnNO₅ is as follows: C, 47.23 (47.07); H, 4.19 (4.28); N, 4.72 (4.57)%. IR (cm⁻¹): 3408, 2909 (w), 1592 (s), 1537, 1374 (s), 740 (w), and 720 (w).

2.1.2. $[Mn(tdc)(dma)]_n$ 2

A mixture comprising a Mn(NO₃)₂ 50% aqueous solution (0.30 g, 1.7 mmol) and H₂tdc (0.086 g, 0.50 mmol) in a mixed solvent of 8 mL DMA and 2 mL ethanol was heated at 100 °C for 5000 min. Pale yellow crystals were obtained (0.128 g, 82%). Elemental analysis, *Anal.* (Calc.) for C₁₀H₁₁MnNO₅S: C, 38.39 (38.47); H, 3.58 (3.55); N, 4.51 (4.49)%. IR (cm⁻¹): 3371, 1624, 1551 (vs), 1508 (s), 1452 (w), 1372 (vs), 1126 (w), 1044, 779 (s), 681 (w), 540 (w), 496 (w).

2.1.3. $[Mn(tdc)(nmp)]_n$ **3**

Same procedure for **2** was applied with NMP in place of DMA. Pale yellow crystals were obtained (0.134 g, 83%). Elemental analysis, *Anal.* (Calc.) for $C_{11}H_{11}MnNO_5S$: C, 40.66 (40.75); H, 3.44 (3.42); N, 4.33 (4.32)%. IR (cm⁻¹): 3429, 1618 (s), 1583 (s), 1527 (s), 1383 (s), 1367 (vs), 1312, 1050 (w), 772 (s), 676 (w), 476(w).

2.1.4. [Mn(tdc)(dmso)]_n 4

Same procedure for **2** was applied with DMSO in place of ethanol. Pale yellow crystals were obtained (0.099 g, 65%). Elemental analysis, *Anal.* (Calc.) for $C_8H_8MnO_5S_2$: C, 31.63 (31.69); H, 2.65

(2.66)%. IR (cm⁻¹): 3446, 1575 (s), 1528 (s), 1373 (vs), 1315, 996, 940, 793, 772 (w), 677 (w), 475.

2.1.5. $[Mn(tp)(dmf)]_n$ 5

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.30 g, 1.7 mmol) and H₂tp (0.166 g, 1.0 mmol) in a mixed solvent of 6 mL DMF and 4 mL ethanol was heated at 90 °C for 4000 min. Pale yellow crystals were obtained (0.187 g, 64% based on H₂tp). Elemental analysis, *Anal.* (Calc.) for C₂₂H₂₂Mn₂N₂O₁₀: C, 45.20 (45.18); H, 2.65 (2.64); N, 4.78 (4.79)%. IR (cm⁻¹): 3069 (w), 2929 (s), 2886, 1662 (vs), 1627 (vs), 1578 (vs), 1385 (vs), 1153, 1104 (s), 1020, 891 (w), 866 (w), 819 (s), 752 (vs), 673.

2.1.6. $[Mn(tmtp)(dmf)]_n$ 6

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.036 g, 0.20 mmol) and H₂tmtp (0.044 g, 0.20 mmol) in a mixed solvent of 2 mL DMF and 1 mL ethanol was heated at 90 °C for 4000 min. Colorless crystals were obtained (0.033 g, 48% based on H₂tmtp). There was not enough product for elemental analysis and IR measurement.

2.1.7. { $[Co(ntp)(H_2O)] \cdot 1.25H_2O$ }_n **7**

A mixture comprising $Co(NO_3)_2 \cdot 6H_2O$ (0.146 g, 0.50 mmol) and H_2 ntp (0.105 g, 0.50 mmol) in a mixed solvent of 10 mL DMF and 3 mL H_2O was heated at 100 °C for 5000 min. Red crystals were obtained (0.132 g, 87%). Elemental analysis, *Anal.* (Calc.) for $C_8H_{7.5-}$ CoNO_{8.25}: C, 32.66 (31.14); H, 2.23 (2.45); N, 4.79 (4.54)%. IR (cm⁻¹): 3447, 2928 (w), 1618 (s), 1537(w), 1387 (s), 1011, 773, 607 (w), 541 (s).

2.1.8. [Zn(1,4-ndc)(dmf)]_n 8

A mixture comprising ZnCl₂ (0.136 g, 1.0 mmol) and H₂(1,4-ndc) (0.216 g, 1.0 mmol) in a mixed solvent of 10 mL DMF and 3 mL H₂O was heated in a 20 mL Teflon lined vessel at 120 °C for 4320 min. Purple block crystals were obtained (0.330 g, 94%). Elemental analysis, *Anal.* (Calc.) for $C_8H_{7.5}CoNO_{8.25}$: C, 51.45 (51.04); H, 3.58 (3.69); N 3.93 (3.97)%.

2.1.9. $[Cu_2(tdc)_2(NH_3)_4]_n$ 9

A mixture comprising Cu(NO₃)₂·2H₂O (0.121 g, 0.50 mmol) and H₂tdc (0.086 g, 0.50 mmol) in a mixed solvent of 8 mL DMA (or NMP) and 2 mL aqueous ammonia was left to stand at room temperature for 1 month. Blue crystals were obtained (0.073 g, 55%). Elemental analysis, *Anal.* (Calc.) for C₈H₆CuN₂O₄S: C, 33.16 (33.03); H, 2.09 (2.10); N, 9.67 (9.71)%. IR (cm⁻¹): 3355, 2989 (w), 1634, 1586 (s), 1552, 1523, 1384 (s), 1361 (vs), 823 (w), 767, 476 (w).

2.1.10. [Cu₂(tbip)₂(dma)₂]_n 10

A mixture comprising Cu(NO₃)₂·2H₂O (0.072 g, 0.30 mmol) and H₂tbip (0.067 g, 0.30 mmol) in 10 mL DMA was heated at 70 °C for

5760 min. Blue crystals were obtained (0.115 g, 58%). Elemental analysis, *Anal.* (Calc.) for $C_{16}H_{21}NO_5Cu$: C, 51.92 (51.81); H, 5.69 (5.71); N, 3.81 (3.78)%. IR (cm⁻¹): 3427 (vs), 2956, 1612 (vs), 1382 (vs), 1267(w), 787, 730.

2.1.11. { $[Cu_2(ip)_2(nmp)_2 \{Cu_2(ip)_2(H_2O)_2\}_2]$ ·5NMP·2H₂O}_n **11**

A mixture comprising Cu(NO₃)₂·2H₂O (0.048 g, 0.20 mmol) and H₂ip (0.033 g, 0.20 mmol) in a mixed solvent of 4 mL NMP and 6 mL ethanol was left to stand at room temperature for 4 months. Blue crystals were obtained (0.018 g, 26%). Elemental analysis, *Anal.* (Calc.) for C₈₃H₉₉Cu₆N₇O₃₇: C, 47.96 (45.98); H, 4.32 (4.60); N, 4.89 (4.52)%. IR (cm⁻¹): 3427 (s), 2925 (w), 1633(vs), 1575 (w), 1443 (w), 1388 (vs), 1065, 746 (w), 723(w), 485(s).

2.1.12. $[Zn_2(tp)_2(nmp)_2]_n$ 12

A mixture comprising Zn(NO₃)₂·6H₂O (0.297 g, 1.0 mmol) and H₂tp (0.166 g, 1.0 mmol) in 10 mL NMP was heated at 90 °C for 6000 min. Colorless block crystals were obtained (0.192 g, 59%). Elemental analysis, *Anal.* (Calc.) for $C_{13}H_{13}NO_5Zn$: C, 47.40 (47.51); H, 4.70 (3.99); N, 5.18 (4.26)%.

2.1.13. [Zn₂(2,6-ndc)₂(dmf)₂]_n 13

A mixture comprising Zn(NO₃)₂·6H₂O (0.297 g, 1.0 mmol) and H₂(2,6-ndc) (0.216 g, 1.0 mmol) in 15 mL DMF was heated in a 20 mL Teflon lined vessel at 120 °C for 4000 min. Pale yellow block crystals were obtained (0.276 g, 78%). Elemental analysis, *Anal.* (Calc.) for C₁₅H₁₃NO₅Zn: C, 51.45 (51.09); H, 3.56 (3.72); N, 3.93 (3.97)%.

2.1.14. $[Zn_2(tdc)_2(dma)_2]_n$ 14

A mixture comprising $Zn(NO_3)_2 \cdot 6H_2O$ (0.149 g, 0.50 mmol) and H_2tdc (0.086 g, 0.50 mmol) in 10 mL DMA was heated at 90 °C for 7000 min. Colorless crystals were obtained (0.110 g, 56%). IR (cm⁻¹): 3421, 1635 (s), 1577, 1528 (w), 1383 (vs), 1261, 771 (w), 686(w), 494.

2.1.15. [Zn₂(tdc)₂(py)₂]_n **15**

A mixture comprising $Zn(NO_3)_2 \cdot 6H_2O$ (0.149 g, 0.50 mmol) and H_2tdc (0.086 g, 0.50 mmol) in a mixed solvent of 8 mL DMA (or NMP) and 2 mL pyridine was heated at 90 °C for 7000 min. Colorless crystals were obtained (0.118 g, 75%). IR (cm⁻¹): 3440, 1607 (s), 1573, 1528, 1384 (vs), 1218 (w), 770, 501(w).

2.1.16. [Mn₃(2,6-ndc)₃(dmf)₄]_n **16**

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.50 mmol) and H₂(2,6-ndc) (0.108 g, 0.50 mmol) in 15 mL DMF was heated at 90 °C for 4000 min. Colorless block crystals were obtained (0.222 g, 43%). Elemental analysis, *Anal.* (Calc.) for C₄₈H₄₆₋Mn₃N₄O₁₆: C, 52.17 (52.42); H, 4.17 (4.21); N 5.16 (5.09)%.

2.1.17. [Mn₃(2,6-ndc)₃(dma)₄]_n 17

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.50 mmol) and $H_2(2,6-ndc)$ (0.108 g, 0.50 mmol) in 15 mL DMA was heated at 100 °C for 4320 min. Orange block crystals were obtained (low yield). There was not enough product for elemental analysis and IR measurement.

2.1.18. $[Mn_3(2,6-ndc)_3(nmp)_4]_n$ **18**

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.50 mmol) and $H_2(2,6-ndc)$ (0.108 g, 0.50 mmol) in a mixed solvent of 8 mL NMP and 8 mL ethanol was heated at 100 °C for 4000 min. Yellow block crystals were obtained (low yield). There was not enough product for elemental analysis and IR measurement.

2.1.19. $[Mn_3(bpdc)_3(dma)_4]_n$ 19

A mixture comprising $MnCl_2 \cdot 4H_2O$ (0.050 g, 0.25 mmol) and H_2 bpdc (0.061 g, 0.25 mmol) in 10 mL DMA was heated at 100 °C for 4320 min. Yellow crystals were obtained (0.050 g, 49%). Elemental analysis, *Anal.* (Calc.) for $C_{58}H_{60}N_4O_{16}Mn_3$: C, 56.93 (56.46); H, 4.83(4.90); N, 4.68 (4.54)%. IR (cm⁻¹): 3388 (s), 2926 (w), 1576 (vs), 1524 (vs), 1386 (vs), 1180 (w), 796 (vs), 672(w).

2.1.20. $[Co_3(2,6-ndc)_3(dma)_4]_n$ **20**

A mixture comprising Co(NO₃)₂·6H₂O (0.146 g, 0.50 mmol) and H₂(2,6-ndc) (0.054 g, 0.50 mmol) in a mixed solvent of 10 mL DMA and 2 mL ethanol was heated at 100 °C for 2880 min. Red crystals were obtained (low yield). There was not enough product for elemental analysis and IR measurement.

2.1.21. $[Mn_3(tp)_3(nmp)_4]_n$ **21**

A mixture comprising a $Mn(NO_3)_2$ 50% aqueous solution (0.090 g, 0.50 mmol) and $H_2(2,6-ndc)$ (0.108 g, 0.50 mmol) in 10 mL NMP was heated at 90 °C for 4000 min. Colorless block crystals were obtained (0.267 g, 76%). Elemental analysis, *Anal.* (Calc.) for C₄₄H₄₈Mn₃N₄O₁₆: C, 50.17 (50.15); H, 4.53 (4.59); N, 5.29 (5.32)%. IR (cm⁻¹): 3056 (w), 2944, 1648 (vs), 1604 (vs), 1557 (vs), 1506 (s), 1382 (vs), 1304 (s), 1260 (s), 1172 (w), 1114 (w), 1018, 984 (w), 885 (w), 843, 815, 748 (vs), 666 (w).

2.1.22. {[Co₃(bpdc)₃(dma)₂]·4DMA}_n 22

A mixture comprising $Co(NO_3)_2 \cdot 6H_2O$ (0.073 g, 0.25 mmol) and $H_2(2,6-ndc)$ (0.054 g, 0.25 mmol) in 10 mL DMA was heated at 100 °C for 4320 min. Red crystals were obtained (0.151 g, 64%). Elemental analysis, *Anal.* (Calc.) for $C_{66}H_{78}Co_3N_6O_{18}$: C, 57.24 (55.82); H, 5.38 (5.54); N, 6.11 (5.92)%. IR (cm⁻¹): 3603(w), 3427 (w), 1684(vs), 1594(vs), 1540(s), 1396 (vs), 1295, 1178 (w), 843, 773 (s), 676 (w).

2.1.23. { $[Zn_3(bpdc)_3(dmf)_2] \cdot 4DMF \cdot 0.5H_2O$ }_n **23**

A mixture comprising $Zn(NO_3)_2$ · GH_2O (0.297 g, 1.0 mmol) and H_2 bpdc (0.242 g, 1.0 mmol) in 20 mL DMF was filtrated and heated at 80 °C for 8000 min. Colorless crystals were obtained (0.177 g, 39%). There was not enough product for elemental analysis and IR measurement.

2.1.24. {[Zn₃(bpdc)₃(nmp)₂]·4NMP}_n 24

Same procedure for **23** was applied with NMP instead of DMF. Colorless crystals were obtained (low yield). There was not enough product for elemental analysis and IR measurement.

2.1.25. {[Ni(2,6-ndc)(H₂O)₄]·2NMP·2H₂O}_n 25

A mixture comprising $Co(NO_3)_2 \cdot 6H_2O$ (0.073 g, 0.25 mmol) and $H_2(2,6-ndc)$ (0.054 g, 0.25 mmol) in 5 mL NMP was microwave heated at 120 °C for 10 min then cooled down to room temperature. Green block crystals were obtained (0.068 g, 47%). Elemental analysis, *Anal.* (Calc.) for $C_{22}H_{36}N_2O_{12}Ni$: C, 44.36 (45.62); H, 6.41 (6.26); N, 4.96 (4.84)%. IR (cm⁻¹): 3423, 2928 (w), 1642 (s), 1564, 1390 (s), 1189 (w), 793, 774, 476.

2.1.26. [Mn(Haip)₂(H₂O)₂]_n 26

A mixture comprising $Mn(NO_3)_2$ 50% aqueous solution (0.090 g, 0.50 mmol) and H_2aip (0.091 g, 0.50 mmol) in a mixed solvent of 4 mL DMA and 4 mL H_2O was heated at 110 °C for 4000 min. Colorless block crystals were obtained (low yield). There was not enough product for elemental analysis and IR measurement.

2.1.27. [Zn(aip)(dma)]_n 27

A mixture comprising $Zn(NO_3)_2$ ·6H₂O (0.297 g, 1.0 mmol) and H₂aip (0.091 g, 0.50 mmol) in a mixed solvent of 7 mL DMA and 2 mL ethanol was heated at 95 °C for 3000 min. Brown block crys-

Table 2 Crysltal data for **1–27**.

	1	2	3	4	5	6	7
Empirical formula	C12H13MnNO5	C10H11MnNO5S	C11H11MnNO5S	C8H8MnO5S2	C22H22Mn2N2O10	C15H19MnNO5	C8H7 50C0NO8 25
Formula weight	306.17	312.20	324.21	303.20	584.30	348.25	308.58
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	tetragonal	orthorhombic
Space group	C / c	Ωlc	\mathcal{O}	C / c	P2./c	IA. /a	Imma
	1256	1272	1220	122/0	1102	2806	600
F(000)	1230	1272	1520	1224	1192	2090	022
1/K	297(2)	299(2)	296(2)	296(2)	296(2)	223(2)	1/3(2)
a (A)	12.6006(8)	11.8527(6)	11.7729(2)	11.2759(4)	13.5792(6)	20.324(1)	17.9930(6)
b (A)	16.3414(10)	18.2900(7)	18.2439(4)	18.4795(4)	10.1898(4)		7.2497(3)
<i>c</i> (Å)	12.6527(8)	11.4991(6)	11.7165(2)	11.2782(4)	17.6223(7)	15.2571(7)	11.5979(4)
α (°)							
β (°)	107.792(1)	99.020(5)	99.6134(19)	96.217(4)	90.738(1)		
γ (°)							
$V(Å^3)$	2480.7(3)	2462.0(2)	2481.17(8)	2336.25(13)	2438.18(17)	6302.3(4)	1512.87(10)
Z	8	8	8	8	4	16	4
$D_{\rm rate}$ (g cm ⁻³)	1 640	1 685	1 736	1 724	1 592	1 468	1 355
$\mu (\text{mm}^{-1})$	1 080	1 2 5 3	1 247	1 487	1 094	0.860	1 162
Reflection collected/unique	9112/2928	11022/4108	11389/4164	7540/2740	20635/5806	26550/3807	3587/992
Data/rostraints/paramotors	2028/0/107	11022/4100	11505/4104	2740/0/151	5906/0/261	20330/3007	002/0/78
Data/restraints/parameters	2928/0/197	4108/0/103	4104/0/175	2740/0/131	0.0207	0.0212	992/0/78
K _{int}	0.0271	0.0759	0.0229	0.0240	0.0307	0.0313	0.0178
5	1.197	0.847	1.085	1.135	1.046	1.209	1.059
$R_1 [I > 2\sigma(I)]$	0.0556	0.0456	0.0315	0.0574	0.0406	0.0542	0.0411
WR_2 (all data)	0.1194	0.1780	0.1169	0.1829	0.1009	0.1177	0.1343
Δho (e A ⁻³)	0.542/-0.445	0.904/-0.778	0.642/-0.650	0.717/-0.911	0.522/-0.389	0.587/-0.402	1.067/-0.689
	8	9	10	11	12	13	14
Empirical formula	C30H26N2O10Zr	CeHeCuNoOAS	C16H21CuNO	C83H00CucN7O27	C13H13NOEZn	C15H13NOEZn	C ₁₀ H ₁₁ NO _∈ SZn
Formula weight	705.27	267 74	370.88	2167.93	328.61	352.63	322.63
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	Monoclinic	monoclinic
Space group	Pc	Ω_{c}	$p_{2,lc}$	Ωc	$p_{2,lc}$	P2./c	$D2_{n}$
	720	1080	772	4464	FZ1/C	721/0	FZ1/II 656
F(000)	720	1060	172	4404	072	720	152(2)
1/K	295(2)	1/3(2)	1/3(2)	1/3(2)	253(2)	295(2)	153(2)
a (A)	/.1/81(2)	7.6170(6)	12.1599(4)	30.528(5)	7.4479(5)	6.//16(4)	8.4866(2)
b (A)	14.0979(3)	12.6984(8)	10.6507(3)	19.241(3)	13.9477(9)	18.590(1)	14.8476(4)
<i>c</i> (A)	16.0641(4)	19.1943(14)	14.7652(5)	20.103(4)	12.7644(8)	11.6437(6)	10.1406(3)
α (°)							
β (°)	121.726(2)	100.373(8)	104.768(3)	128.611(3)	103.500(1)	97.383(1)	100.734(2)
γ (°)							
V (Å ³)	1382.71(6)	1826.2(2)	1849.09(10)	9227(3)	1289.34(14)	1453.60(14)	1255.41(6)
Ζ	2	8	4	4	4	4	4
$D_{\text{calc.}}$ (g cm ⁻³)	1.694	1.948	1.332	1.561	1.693	1.611	1.707
μ (mm ⁻¹)	1.800	2.609	1.203	1.450	1.923	1.712	2.133
Reflection collected/unique	11048/6641	8137/2217	10775/4320	27799/10781	14647/3087	11320/3343	8051/3095
Data/restraints/parameters	6641/2/402	2217/0/129	4320/38/227	10781/44/679	3087/0/182	3343/0/225	3095/0/185
R:	0.0474	0.0608	0.0318	0.0976	0.0474	0.0220	0.0298
S	0.01/1	1 175	0.0510	1.061	1 252	1.054	0.0230
$B \left[I > 2\sigma(I) \right]$	0.0500	0.0642	0.0430	0.0646	0.0666	0.0368	0.0340
$R_1 \left[1 \ge 20(1) \right]$	0.0500	0.0042	0.0430	0.0040	0.0000	0.0308	0.0340
WR_2 (dll udid)	0.1306	0.1965	0.1254	0.1901	0.1411	0.1011	0.0640
$\Delta \rho$ (e A)	0.663/-1.197	1.676/-0.785	1.331/-0.405	2.238/-0.658	0.814/-0.893	0.457/-0.218	1.210/-0.628
	15	16	17	18	19	20	21
	15	10	17	10	15	20	21
Empirical formula	$C_{11}H_7NO_4SZn$	$C_{48}H_{46}Mn_3N_4O_{16}$	$C_{52}H_{54}Mn_3N_4O_{16}$	$C_{56}H_{54}Mn_3N_4O_{16}$	$C_{58}H_{60}Mn_3N_4O_{16}$	$C_{52}H_{54}Co_3N_4O_{16}$	$C_{44}H_{48}Mn_3N_4O_{16}$
Formula weight	314.61	1099.71	1155.81	1203.85	1233.92	1167.78	1053.68
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	$P2_1/n$	C2/c	C2/c	$P2_1/c$	$P2_1/c$	C2/c	$P2_{1}2_{1}2_{1}$
F(000)	632	2260	2388	1242	1278	2412	2172
T/K	173(2)	223(2)	298(2)	297(2)	173(2)	173(2)	173(2)
a (Å)	7.6939(2)	13.2373(6)	14.3217(3)	11.8731(4)	13.9430(4)	14.1239(3)	9.7175(4)
b (Å)	15.9643(4)	17.9155(8)	18.4222(4)	18.4743(7)	18.2501(6)	18.3243(4)	18.0168(8)
c (Å)	9.8577(3)	21.4035(10)	20.9869(4)	20.5194(5)	12.1687(4)	20.6657(3)	26.7918(11)
α (°)	<- /		. /	N - 7	. /	x - 7	. /
β(°)	97.670(3)	100.105(1)	99.570(2)	142.563(1)	113.169(4)	99.1218(18)	
v (°)				(*)	(-)		
$V(Å^3)$	1199 97(6)	4997 2(4)	5460.07(19)	2736 03(17)	2846 72(16)	5280 86(18)	4690 7(3)
7	Δ	4	4	2, 50.05(17)	20-0.72(10)	4	A
L	-7	1 462	1 406	1 461	<u>-</u> 1 440	1 460	-1 1 402
$D (a cm^{-3})$	1 7/1	1.402	1.400	1.401	0.729	1.409	1.492
$D_{\text{calc.}} (\text{g cm}^{-3})$	1.741	0.020	0754	u /5h	0.728	1.004	0.869
$D_{\text{calc.}}$ (g cm ⁻³) μ (mm ⁻¹)	1.741 2.224	0.820	0.754	21 100/05/00	10 451/2200	22 412/022 4	F 4 3 43 /1 1 3 3 3
$D_{\text{calc.}}$ (g cm ⁻³) μ (mm ⁻¹) Reflection collected/unique	1.741 2.224 6642/2831	0.820 28344/5977	0.754 15834/6751	31 189/6560	19451/7796	22412/6334	54343/11289
D_{calc} . (g cm ⁻³) μ (mm ⁻¹) Reflection collected/unique Data/restraints/parameters	1.741 2.224 6642/2831 2831/0/163	0.820 28344/5977 5977/29/334	0.754 15834/6751 6751/1/383	31 189/6560 6560/10/380	19451/7796 7796/0/373	22412/6334 6334/16/383	54343/11289 11289/1/606
D _{cale} . (g cm ⁻³) μ (mm ⁻¹) Reflection collected/unique Data/restraints/parameters R _{int}	1.741 2.224 6642/2831 2831/0/163 0.0296	0.820 28344/5977 5977/29/334 0.0254	0.754 15834/6751 6751/1/383 0.0260	31 189/6560 6560/10/380 0.0330	19451/7796 7796/0/373 0.0210	22412/6334 6334/16/383 0.0422	54343/11289 11289/1/606 0.0326
D_{calc} (g cm ⁻³) μ (mm ⁻¹) Reflection collected/unique Data/restraints/parameters R_{int} S	1.741 2.224 6642/2831 2831/0/163 0.0296 0.932	0.820 28344/5977 5977/29/334 0.0254 1.079	0.754 15834/6751 6751/1/383 0.0260 1.009	31 189/6560 6560/10/380 0.0330 1.086	19451/7796 7796/0/373 0.0210 1.047	22 412/6334 6334/16/383 0.0422 1.035	54343/11289 11289/1/606 0.0326 1.078
$D_{calc.} (g cm^{-3})$ $\mu (mm^{-1})$ Reflection collected/unique Data/restraints/parameters R_{int} S $R_1 [I > 2\sigma(I)]$	1.741 2.224 6642/2831 2831/0/163 0.0296 0.932 0.0265	0.820 28 344/5977 5977/29/334 0.0254 1.079 0.0519	0.754 15834/6751 6751/1/383 0.0260 1.009 0.0376	31 189/6560 6560/10/380 0.0330 1.086 0.0531	19451/7796 7796/0/373 0.0210 1.047 0.0297	22412/6334 6334/16/383 0.0422 1.035 0.0401	54343/11289 11289/1/606 0.0326 1.078 0.0487
$\begin{array}{l} D_{\text{calc}} \left(\text{g cm}^{-3} \right) \\ \mu \left(\text{mm}^{-1} \right) \\ \text{Reflection collected/unique} \\ \text{Data/restraints/parameters} \\ R_{\text{int}} \\ S \\ R_1 \left[I > 2\sigma(I) \right] \\ wR_2 \left(\text{all data} \right) \end{array}$	1.741 2.224 6642/2831 2831/0/163 0.0296 0.932 0.0265 0.0574	0.820 28344/5977 5977/29/334 0.0254 1.079 0.0519 0.1355	0.754 15834/6751 6751/1/383 0.0260 1.009 0.0376 0.1114	31 189/6560 6560/10/380 0.0330 1.086 0.0531 0.1255	19451/7796 7796/0/373 0.0210 1.047 0.0297 0.0799	22412/6334 6334/16/383 0.0422 1.035 0.0401 0.0975	54343/11289 11289/1/606 0.0326 1.078 0.0487 0.1247
$\begin{array}{l} D_{\text{calc}} \left(\text{g cm}^{-3} \right) \\ \mu \left(\text{mm}^{-1} \right) \\ \text{Reflection collected/unique} \\ \text{Data/restraints/parameters} \\ R_{\text{int}} \\ S \\ R_1 \left[I > 2\sigma(I) \right] \\ wR_2 \left(\text{all data} \right) \\ \Delta \rho \left(\text{e A}^{-3} \right) \end{array}$	1.741 2.224 6642/2831 2831/0/163 0.0296 0.932 0.0265 0.0574 0.648/-0.363	0.820 28344/5977 5977/29/334 0.0254 1.079 0.0519 0.1355 0.882/ -0.442	0.754 15834/6751 6751/1/383 0.0260 1.009 0.0376 0.1114 0.616/ -0.310	31 189/6560 6560/10/380 0.0330 1.086 0.0531 0.1255 0.586/ -0.387	19451/7796 7796/0/373 0.0210 1.047 0.0297 0.0799 0.631/ -0.289	22412/6334 6334/16/383 0.0422 1.035 0.0401 0.0975 0.451/ -0.500	54343/11289 11289/1/606 0.0326 1.078 0.0487 0.1247 1.103/ -0.639

Table 2 (continued)

	22	23	24	25	26	27
Empirical formula	C66H78C03N6O18	C120H132N12O37Zn6	C72H78N6O18Zn3	C22H36N2NiO12	$C_{16}H_{16}MnN_2O_{10}$	$C_{12}H_{14}N_2O_5Zn$
Formula weight	1420.13	2726.60	1511.51	579.24	451.25	331.62
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/n$	$P2_1/c$	ΡĪ	P2/c	$P2_1/c$
F(000)	1482	2824	1572	306	462	680
T/K	173(2)	273(2)	223(2)	123(2)	173(2)	173(2)
a (Å)	12.2756(2)	20.0297(10)	12.1580(5)	7.1977(3)	6.9972(2)	10.1163(3)
b (Å)	14.1032(2)	14.8284(7)	14.0426(5)	7.2645(4)	10.0161(3)	7.7922(2)
c (Å)	25.8603(4)	22.9351(11)	25.9262(8)	12.8111(7)	13.8929(5)	16.0161(5)
α (°)				81.631(4)		
β (°)	129.437(1)	111.256(1)	127.589(1)	83.686(4)	124.842(2)	90.522(2)
γ (°)				78.332(4)		
V (Å ³)	3457.74(9)	6348.5(5)	3507.5(2)	646.79(6)	799.13(5)	1262.47(6)
Ζ	2	2	2	1	2	4
D_{calc} . (g cm ⁻³)	1.364	1.426	1.431	1.487	1.875	1.745
μ (mm ⁻¹)	0.783	1.199	1.092	0.816	0.896	1.967
Reflection collected/unique	21817/8052	54359/15099	40257/8483	4612/2784	4044/1850	19861/3160
Data/restraints/parameters	8052/0/452	15099/0/816	8483/0/450	2784/30/214	1850/2/152	3160/2/192
R _{int}	0.0243	0.0516	0.0489	0.0132	0.0248	0.0731
S	0.985	1.111	1.098	1.105	1.001	0.971
$R_1 \left[I > 2\sigma(I) \right]$	0.0318	0.0739	0.0586	0.0284	0.0293	0.0325
wR_2 (all data)	0.0793	0.2116	0.1355	0.0783	0.0794	0.0872
Δho (e A ⁻³)	0.463/-0.387	1.792/-0.636	0.797/-0.704	0.354/-0.395	0.322/-0.399	0.659/-0.611

Fig. 1. Rod-shaped SBUs in 1 (a), 2-4 (b), 5 (c), 6 (d), 7 (e), and 8 (f); pcu topology for the rod packing structure simplified from compound 4.

tals were obtained (0.067 g, 40% based on $H_{2}aip$). Elemental analysis, *Anal.* (Calc.) for $C_{12}H_{14}N_2O_5Zn$: C, 42.64 (43.16); H, 5.53 (4.26); N 8.93 (8.45)%.

2.2. X-ray structure determination

The data were collected on a Bruker SMART Apex CCD diffractometer or an Oxford Gemini S Ultra CrysAlis CCD diffractometer with monochromatic graphite Mo K α radiation. Structure solutions and full-matrix least-square refinements based on F^2 were performed using the sheLXS-97 and sheLXL-97 program packages, respectively. All the non-hydrogen atoms were refined anisotropically. The H atoms on ligands were positioned geometrically and were allowed to ride on the C atoms in the subsequent refinement (aromatic C-H = 0.93 Å, U(H) = 1.2 Ueq(C), methyl C-H = 0.95 Å, U(H) = 1.5 Ueq(C)). The water H-atoms were located and refined with O-H = 0.85 Å, U(H) = 1.5 Ueq(O) restraints. The water H-atoms were set to proper positions so that more hydrogen bonds can be formed. Crystal data for all the compounds are listed in Table 2.

3. Results and discussion

The compounds can be classified into six groups according to their structural features.

3.1. Rod-packing pcu assembled with rod-shaped SBUs

The structural topology for the following eight compounds is rod-packing **pcu** (Fig. 1.) [7]: $[Mn(ip)(dma)]_n$ **1**, $[Mn(tdc)(dma)]_n$ **2**, $[Mn(tdc)(nmp)]_n$ **3**, $[Mn(tdc)(dmso)]_n$ **4**, $[Mn(tp)(dmf)]_n$ **5**, $[Mn(tmtp)(dmf)]_n$ **6**, $\{[Co(ntp)(H_2O)]\cdot 1.25H_2O\}_n$ **7** and [Zn(1,4 $ndc)(dmf)]_n$ **8**. These compounds were assembled using short ligands (e.g., H₂**ip** and its derivatives ~5.9 Å as well as H₂tdc ~6.4 Å), and medium-length ligands (H₂**tp** and its derivatives ~7 Å). Metal ions, such as Mn²⁺, Co²⁺ and Zn²⁺, form M_n metal centres or rod-shaped SBUs composed of corner-sharing octahedra, while the Mn²⁺ ion with the largest size can also form edge-sharing octahedral rod-shaped SBUs (Fig. 1a, d). Six of the eight compounds in this group were formed using Mn²⁺ ions, which demonstrates

Fig. 2. Dinuclear metal centres appear in 9 (a), 12 (b), and 11 (c, C-H hydrogen atom omitted); sql net for 9, 10, and 12-15 (d); kgm net for 11 (e).

Fig. 3. Trinuclear SBU for 16 (a) and structural topology pcu for 16-20 (b).

that Mn²⁺ has a strong tendency to form rod-shaped SBUs. Notably, **2**, **3** and **4** were synthesised in different solvents and are isostructures, which demonstrates that the solvents did not influence the

structures. Compounds **5** and **6** were synthesised using H_2 tp and tetramethyl-substituted H_2 tmtp, and their structures have same topology.

3.2. sql and kgm nets assembled with dinuclear metal centres

The following seven compounds contain dinuclear metal centres with four coordination points: $[Cu_2(tdc)_2(NH_3)_4]_n$ 9, $[Cu_2(-tbip)_2(dma)_2]_n$ 10, $\{[Cu_2(ip)_2(nmp)_2\{Cu_2(ip)_2(H_2O)_2\}_2] \cdot 5NMP\cdot 2H_2 \cdot O\}_n$ 11, $[Zn_2(tp)_2(nmp)_2]_n$ 12, $[Zn_2(2,6-ndc)_2(dmf)_2]_n$ 13, $[Zn_2(tdc)_2(dma)_2]_n$ 14 and $[Zn_2(tdc)_2(py)_2]_n$ 15 (Fig. 2). When the same ligands with short-medium lengths as for group 1 were used (except for 13, which was assembled with the long ligand H₂(2,6-ndc), Cu²⁺ and Zn²⁺ tended to form dinuclear metal centres instead of rod-shaped SBUs, and the topology of the structures were sql, which is related to a node with four coordination points. Most of the paddle-wheel M₂ metal centres adopted a sql topology, while the structure for 11 was assembled using a bent ligand, H₂ip, which adopted a kgm net [42].

3.3. pcu net assembled with trinuclear metal centres

The following five compounds contain trinuclear metal centres with six coordination points, and their structure topology is **pcu** (Fig. 3): $[Mn_3(2,6-ndc)_3(dmf)_4]_n$ **16**, $[Mn_3(2,6-ndc)_3(dma)_4]_n$ **17**, $[Mn_3(2,6-ndc)_3(nmp)_4]_n$ **18**, $[Mn_3(bpdc)_3(dma)_4]_n$ **19**, and $[Co_3(2,6-ndc)_3(dma)_4]_n$ **20**. These compounds were assembled using relatively long ligands (H₂(2,6-ndc) 9.15 Å and H₂bpdc 11.22 Å). Although the ligands are long, the structures contain no voids for guest molecules. In the linear M₃ metal centre, each metal ion at the end was connected to two organic solvent molecules as auxiliary ligands that occupy a potential vacancy in the crystal structure. Although the compounds **16**, **17** and **18** were synthesised in DMF, DMA and NMP, respectively, their metal centre types and structure topologies were the same.

3.4. hxl net assembled with trinuclear metal centres

The following four compounds also contain trinuclear metal centres with six coordination points similar to the compounds discussed above, but their structures adopted a **hxl** net (Fig. 4.): $[Mn_3(tp)_3(nmp)_4]_n$ **21**, $\{[Co_3(bpdc)_3(dma)_2]$ ·4DMA}_n**22**, $\{[Zn_3(bpdc)_3(dmf)_2]$ ·4DMF·0.5H₂O}_n**23**, and $\{[Zn_3(bpdc)_3(nmp)_2]$ ·4NMP}_n**24**. The compound **21** was assembled with the medium-long ligand H₂**tp**, but **22**, **23** and **24** were assembled with the long ligand H₂**bpdc**. Furthermore, except for Mn²⁺ ion at the end of the Mn₃ metal centre, which combines two organic solvent molecules, each Co²⁺ or Zn²⁺ ion coordinated with only one solvent molecule. Clearly, Co²⁺ and Zn²⁺ are smaller than Mn²⁺ and can have a lower coordination number. This coordination mode produced a large void in crystalline structures. Guest solvent molecules occupied the voids and stabilised the crystal structures. Compounds **23** and **24** were synthesised in DMF and NMP, respectively, and are isostructures.

3.5. 1D structure assembled with a mononuclear metal centre

In this group, there is only one compound, {[Ni(2,6-ndc)(H₂-O)₄]·2NMP·2H₂O}_n**25**, which was assembled with a Ni²⁺ ion and bridging ligand H₂(2,6-ndc) to form a 1D structure (Fig. 5a). Compared with the other first-row transition metal elements, nickel analogues are often difficult to generate or have not been reported. Furthermore, the Ni²⁺ ion is often coordinated with more than one water molecule, which prevents the Ni²⁺ ion from connecting to more bridging ligands and formation of high dimensional structures. The coordination behaviour of the Ni²⁺ ion may be due to the small ion radius.

Fig. 4. Trinuclear metal centres appear in 21 (a, C-H hydrogen atom omitted), 22 (b), and the hxl net for 21-24 (c).

Fig. 5. 1D structure for 25 (a) and 26 (b); coordination mode of the metal centre (c) and the hcb net for 27 (d).

Table 3 Summary of the structural features for coordination polymers 1–25 and metal ions/ligands.

Ligand	Metal centre (SBU)	Topology	Mn ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
Short-medium	Rod-shaped	pcu	6	1			1
	M ₂	sql				3	3
Medium-long	M ₃	pcu	4	1			
	M ₃	hxl	1	1			2
Long	М	1D			1		

3.6. Two structures assembled using a protonated or tritopic ligand

 $[Mn(Haip)_2(H_2O)_2]_n$ **26** and $[Zn(aip)(dma)]_n$ **27** are different from the compounds discussed above. In **26**, the amino group is protonated; thus, the Mn²⁺:H**aip** ratio should be 1:2, and Mn²⁺ ions were bridged by pairs of H**aip** ligands to form a 1D structure (Fig. 5b). In **27**, **aip** is a building block with three connections and amino groups coordinated with a Zn²⁺ ion; each Zn²⁺ ion also coordinated with three **aip** bridging ligands and one DMA (Fig. 5c). The result is an **hcb** net (Fig. 5d).

The relationships between the coordination polymers' structural features (metal centre and topology) and metal ions or ligands are summarised in Table 3.

The data clearly show that Mn²⁺ tends to form rod-shaped SBUs and densely packed structures, which are generated from the large size and high coordination number of the Mn²⁺ ion. Given the potential for more bridging and auxiliary ligands connected to the metal centre, Mn²⁺ is a poor candidate for porous structures.

In contrast, Cu^{2+} and Zn^{2+} tend to form discrete metal centres with a limited number of metal ions, especially the M₂ metal centre (paddle-wheel-shaped). The M₂ metal centre with four coordination points typically forms a **sql** topology when linked by linear bridging ligands. Solvent molecules are often included in the crystal structure voids.

It is difficult to react Ni²⁺ with benzene dicarboxylic acid to yield coordination polymers, and Ni²⁺ PCPs are rare [43]. The presence of many coordinated water molecules on the Ni²⁺ ion prevents it from connecting to more bridging ligands and produces

low dimensional structures. This was also observed in coordination polymer assemblies that were hydrothermally synthesised [44]. The size and coordination and assembly behaviours for Co^{2+} lie between Mn^{2+} and Ni^{2+} .

The different synthetic conditions in this research, such as temperature, solvent and solvent mixture ratio, did not significantly influence the assembly.

4. Conclusion

The metal ion used is the most important factor that influences coordination polymer assembly. It determines the type of metal centre, interaction between metal ions, and topology for the entire structure. A carefully selected metal ion with the proper ion radius, coordination number and electron configuration is vital for design and synthesis of inorganic-organic hybrid crystalline materials.

The organic ligand is also important, but it is the second most important influential factor in this context. Changes in ligand shape and properties, including bend, length, and substituent, can change the distances between the metal centres or SBUs, the structure void, or level of guest solvent molecules in the structure; however, such changes do not influence the inorganic portion of the compounds or net topology. This is the foundation for many design principles, such as the "expansion" strategy for porous MOFs [45].

Synthetic conditions are not key factors in this research. Three small groups of compounds synthesised in different solvents, for example, **2–4**, **16–18**, **23** and **24**, show that solvents also act as

the auxiliary ligands but do not influence the assemblies. Temperature also did not influence the structural features in this work.

Acknowledgement

We thank the NNSFC (Grant Nos. 20471049 and 21071117) for supporting the research. Thanks also to Mr. Chao Du, Mr. Dong-Sheng Zhou and Ms. Fei-Fei Lan.

Appendix A. Supplementary material

CCDC 897845–897871 contain the supplementary crystallographic data for **1–27**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at http:// dx.doi.org/10.1016/j.ica.2013.03.042.

References

- [1] M. O'Keeffe, O.M. Yaghi, Chem. Rev. 112 (2012) 675.
- [2] C.B. Aakeröy, N.R. Champness, C. Janiak, CrystEngComm 12 (2010) 22.
- [3] J.J. Perry IV, J.A. Perman, M.J. Zaworotko, Chem. Soc. Rev. 38 (2009) 1400.
- [4] P. Dechambenoit, J.R. Long, Chem. Soc. Rev. 40 (2011) 3249.
- [5] A. Corma, H. García, F.X.L. Xamena, Chem. Rev. 110 (2010) 4606.
- [6] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne, J.T. Hupp, Chem. Rev. 112 (2012) 1105.
- [7] C. Wang, T. Zhang, W. Lin, Chem. Rev. 112 (2012) 1084.
- [8] G. Givaja, P. Amo-Ochoa, C.J. Gómez-García, F. Zamora, Chem. Soc. Rev. 41 (2012) 115.
- [9] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38 (2009) 1330.
- [10] A.U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 38 (2009) 1284.
- [11] N. Stock, S. Biswas, Chem. Rev. 112 (2012) 933.
- [12] R.B. Getman, Y.-S. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev. 112 (2012) 703.
- [13] A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev. 41 (2012) 5262.
- [14] B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 43 (2010) 1115.
- [15] M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Chem. Rev. 112 (2012) 782.
- [16] T. Uemura, N. Yanai, S. Kitagawa, Chem. Soc. Rev. 38 (2009) 1228.

- [17] M. Kurmoo, Chem. Soc. Rev. 38 (2009) 1353.
- [18] U. Schubert, Chem. Soc. Rev. 40 (2011) 575.
- [19] N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 127 (2005) 1504.
- [20] S.M. Cohen, Chem. Rev. 112 (2012) 970.
- [21] K.K. Tanabe, S.M. Cohen, Chem. Soc. Rev. 40 (2011) 498.
- [22] F.A.A. Paz, J. Klinowski, S.M.F. Vilela, J.P.C. Tomé, J.A.S. Cavaleiro, J. Rocha, Chem. Soc. Rev. 41 (2012) 1088.
- [23] D. Zhao, D.J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 44 (2011) 123.
 [24] D.-S. Zhou, F.-K. Wang, S.-Y. Yang, Z.-X. Xie, R.-B. Huang, CrystEngComm 11 (2009) 2548.
- [25] H.L. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
- [26] S.-Y. Yang, L.-S. Long, R.-B. Huang, L.-S. Zheng, Chem. Commun. (2002) 472.
- [27] S.-Y. Yang, L.-S. Long, Y.-B. Jiang, R.-B. Huang, L.-S. Zheng, Chem. Mater. 14 (2002) 3229.
- [28] L.-S. Long, CrystEngComm 12 (2010) 1354.
- [29] H.-Y. Zang, Y.-Q. Lan, G.-S. Yang, X.-L. Wang, K.-Z. Shao, G.-J. Xu, Z.-M. Su, CrystEngComm 12 (2010) 434.
- [30] P. Kanoo, K.L. Gurunatha, T.K. Maji, Cryst. Growth Des. 9 (2009) 4147.
- [31] F.-K. Wang, X.-X. Song, S.-Y. Yang, R.-B. Huang, L.-S. Zheng, Inorg. Chem. Commun. 10 (2007) 1198.
- [32] S.-Y. Yang, L.-S. Long, R.-B. Huang, L.-S. Zheng, S.W. Ng, Inorg. Chim. Acta 358 (2005) 1882.
- [33] P.M. Forster, A.R. Burbank, C. Livage, G. Férey, A.K. Cheetham, Chem. Commun. (2004) 368.
- [34] C.-P. Li, M. Du, Chem. Commun. (2011) 5958.
- [35] R. Custelcean, Chem. Soc. Rev. 39 (2010) 3675.
- [36] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Science 295 (2002) 469.
- [37] J.L.C. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater. 73 (2004) 3.
- [38] H.-M. Li, S.-Y. Yang, J.-W. Wang, L.-S. Long, R.-B. Huang, L.-S. Zheng, Polyhedron 29 (2010) 2851.
- [39] H.-B. Yuan, S.-Y. Yang, Z.-X. Xie, R.-B. Huang, S.R. Batten, Inorg. Chem. Commun. 12 (2009) 755.
- [40] F.-K. Wang, S.-Y. Yang, R.-B. Huang, L.-S. Zheng, S.R. Batten, CrystEngComm 10 (2008) 1211.
- [41] S.-Y. Yang, L.-S. Long, R.-B. Huang, L.-S. Zheng, S.W. Ng, Acta Crystallogr., Sect. E 61 (2005) m1671.
- [42] O. Delgado-Friedrichs, M. O'Keeffe, O.M. Yaghi, Phys. Chem. Chem. Phys. 9 (2007) 1035.
- [43] P. Maniam, N. Stock, Inorg. Chem. 50 (2011) 5085.
- [44] R.-F. Jin, S.-Y. Yang, H.-M. Li, L.-S. Long, R.-B. Huang, L.-S. Zheng, CrystEngComm 14 (2012) 1301.
- [45] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reinke, M. O'Keeffe, O.M. Yaghi, Acc. Chem. Res. 34 (2001) 319.