

Journal of Fluorine Chemistry 75 (1995) 117-120

Regiospecific synthesis of aromatic compounds via organometallic intermediates. Part 6. 1,3,5-perfluoroalkylether benzenes

Christ Tamborski^{a,*}, Loomis S. Chen^b

^a Wright Laboratory, (Materials Directorate), Wright-Patterson AFB, OH 45433-7734, USA ^b University of Dayton Research Institute, Dayton, OH 45469-0168, USA

Received 16 November 1994; accepted 1 June 1995

Abstract

1,3,5-Tribromobenzene can undergo a mono lithium-halogen exchange reaction to yield 3,5-Br₂C₆H₃Li which can subsequently react with a perfluoroalkylether ester, $R_fOR_fC(O)OC_2H_5$, yielding the aryl ketone 3,5-Br₂C₆H₃C(O)R_fOR_f. A classical SF₄/HF reaction of this ketone yields the perfluoroalkylether benzene, 3,5-Br₂C₆H₃CF₂R_fOR_f. This process can be repeated stepwise until all bromines are substituted, yielding the final product 1,3,5-C₆H₃(CF₂R_fOR_f)₃. The R_fOR_f was chosen as C₃F₇O[CF(CF₃)CF₂O]₂CF(CF₃). Other perfluoroalkyl- and perfluoroalkyl-ether esters or other electrophiles can be chosen to react with the various organolithium intermediates.

Keywords: Regiospecific synthesis; Perfluoroalkylether benzenes; Mass spectrometry; IR spectroscopy

1. Introduction

Our previous studies on the regiospecific synthesis of aromatic compounds via aryllithium intermediates were concerned with 1,2-dibromobenzene [1,5], 1,4-dibromobenzene [3] and 1,3,5-tribromobenzene [2,4]. Mono phenyllithium intermediates of these polybromobenzenes were prepared by metal-halogen exchange reactions [6] and shown to react with a variety of compounds e.g. CO_2 [1-3,5], H₂O $[1-3], HC(O)N(CH_3)_2$ $[1-3], CH_3C(O)N(CH_3)_2$, [3],CH₃I [3], S [3], (CH₃)₃SiCl [1,4], (CH₃)₂SiClH [1], $(CH_3)_2SiCl_2$ [1,2], PCl₃ [2], $(CH_3)_3GeCl$ [4], $(CH_3)_3SnCl$ [4], C_6F_6 [1,2], $C_3F_7C(O)OC_2H_5$ [1,2], $C_2F_5O(C_2F_4O)_3CF_2C(O)OC_2H_5$ [2], $C_3F_7O[CF(CF_3) CF_2O_2CF(CF_3)C(O)OC_2H_5$ [2], $(CF_3)_2C(O)$ [2], $CF_3C(O)CH_3$ [3,5]. Generally, high yields of mono-substituted (X) benzene compounds $XC_6H_{5-y}Br_y$ (y = 1, 2) were obtained.

These compounds, in turn, could be treated further with nbutyllithium to give substituted phenyllithium intermediates which reacted with electrophilic compounds to yield disubstituted products [2,3]. This process could be repeated until all available bromines were substituted. In our continued studies using polybromobenzenes in a 'template-directed synthesis', we now report the synthesis of 1,3,5-tris(perfluoroalkylether)benzene $[1,3,5-(R_fOR_f-CF_2)_3C_6H_3$, where $R_fOR_f = C_3F_7O[CF(CF_3)CF_2O]_2CF-(CF_3)]$ by this technique.

2. Discussion

Recently, Chen, Chen and Eapen reported the synthesis of aromatic compounds having perfluoroalkyl (R_f) and perfluoroalkylether $[R'_{fO}(CF_2)_n]$ substituents. They were made via copper-catalyzed cross-coupling reactions between mono-, di- and tri-bromoaromatic compounds and R_fI and $R'_{fO}(CF_2)_nI$ [7]. Generally, high yields of products were obtained with R_fI and with $R'_{fO}(CF_2)_nI$ where the oxygen was in position 5 or higher on $-O(CF_2)_nI$ unit (n > 4). When the oxygen was in the 3-position $[-O(CF_2)_2I]$, no substituted products were obtained.

We now report our results on the preparation of 1,3,5- $(R_fOR_fCF_2)_3C_6H_3$ compounds by a multiple-step synthesis based on our previous studies [1–5]. The synthetic sequence is shown in Scheme 1. The metal-halogen exchange reactions, resulting in the formation of **I**, **IV** and **VII**, take place readily and give quantitative yields of the organolithium intermediates. This was determined by protonation of aliquot

^{*} Corresponding author at 4520 N. Via Masina, Tucson, AZ 85715, USA (retired from WPAFB, OH).

^{0022-1139/95/\$09.50 © 1995} Elsevier Science S.A. All rights reserved SSDI 0022-1139(95)03307-6

samples of the reaction mixtures by dilute HCl. GC analysis indicated complete disappearance of one bromine and the appearance of the protonated benzene derivative. The reactions between the organolithium intermediates and the perfluoroesters gave the ketones II, V and VIII which were isolated in 80%–90% yields. These were converted by $SF_4/$ HF treatment to the perfluoroalkylether-substituted compounds III, VI and IX.

In this study, the three perfluoroalkylether groups were identical. The reaction sequence, however, allows for the introduction of a variety of substituents simply by varying the type of ester used in the reaction with the various substituted aryllithium intermediates. As an example, VII reacted with $C_2F_5O(CF_2CF_2O)_4CF_2C(O)OC_2H_5$ to give the ketone X.

Attempts to decrease the number of steps in the preparation of IX met with only partial success. Reaction between 1,3,5tribromobenzene and 3 equiv. of n-butyllithium, followed by the addition of an excess of an ester, did not yield any of the desired product except the monosubstituted ketones (see Table 1, Exp. 2). From experiments 3 and 4, Table 1, it can be seen that III could be converted to the 3,5-dilithioperfluoroalkylether benzene in 72 GC area% yield to give, on hydrolysis with dilute HCl, the perfluoroalkylether benzene [8]. The product of the reaction between the dilithioperfluoroalkylether benzene and the ester $R_fOR_fC(O)OEt$ was the monosubstituted ketone, $3-(R_fOR_fCF_2)C_6H_4C(O)R_fOR_f$. These observations suggest that the lithium salts of the hemiketals $Li_2C_6H_3[C(OLi)(OEt)(C(O)R_f)]$ and $Li(R_fOR_fCF_2)-C_6H_3[C(OLi)(OEt)(C(O)R_fOR_f)]$ may have very low solubility in the solvent.

The synthesis of IX as described above is a multistep procedure and may not be applicable to a practical large-scale synthesis of such compounds. It offers, however, the ability to substitute a variety of perfluoroalkyl and perfluoroalkylether substituents simply by varying the type of ester to be reacted with the organolithium intermediates I, IV and VII. Besides the esters, other electrophiles could react with the various organolithium intermediates as shown previously [1-5].

3. Experimental details

3.1. General comments

All reactions were carried out under an atmosphere of dry nitrogen at the specified reduced temperatures. The solvents diethyl ether and tetrahydrofuran were distilled from $LiAlH_4$ prior to use. Gas chromatographic analyses were performed

Table 1	
Reactions of polybromobenzenes, n-butyllithium and dilute HCl or perfluoroalkylether of	ester

Exp. No.	Polybromobenzenes (PBB)	Molar ratio of PBB/n-C₄H9Li	Electrophilic compounds	Solvent	Temp. (°C)	Products (GC area%) ^a
1	1,3,5-Br ₃ C ₆ H ₃	1:3	Dilute HCl	Et ₂ O	- 78	C_6H_6 , Br C_6H_5 , Br $_2C_6H_4$ ^b
2	1,3-5-Br ₃ C ₆ H ₃	1:3	R _f ² C(O)OEt ^c	Et ₂ O	- 78	$R_{f}^{2}C(O)C_{6}H_{5}(2),$ [3- $R_{f}^{2}C(O)$] $C_{6}H_{4}Br$ (16), 1,3- Br_{2} -5-[$R_{f}^{2}C(O)$] $C_{6}H_{3}$ (21) ^d
3	$1,3-Br_2-5-(R_fOR_fCF_2)C_6H_3^{\circ}$ (III)	1:2.2	Dilute HCl	Et ₂ O	-23	$(R_{f}OR_{f}CF_{2})C_{6}H_{5}$ (71), 3- $(R_{f}OR_{f}CF_{2})C_{6}H_{4}Br$ (27)
4	ш	1:3	Dilute HCl	$Et_2O/THF(1:1)$	- 78	$(R_tOR_tCF_2)C_6H_5$ (72), 3- $(R_tOR_tCF_2)C_6H_4Br$ (26)
5	ш	1:3	$R_tOR_tC(O)OEt^e$	Et ₂ O	- 65	$[3-R_{f}OR_{f}CF_{2}]C_{6}H_{4}[C(O)R_{f}OR_{f}] (50)$ $[3-R_{f}OR_{f}CF_{2}][5-R_{f}OR_{f}C(O)]C_{6}H_{3}Br$ $(25) (V), (R_{f}OR_{f}CF_{2})C_{6}H_{5} (21)$
6	III	1:3	R _f OR _f C(O)OEt ^e	Et ₂ O/THF (1:1)	- 65	$[3-R_{f}OR_{f}CF_{2}]C_{6}H_{4}C[(0)R_{f}OR_{f}](68),$ [3-R_{f}OR_{f}CF_{2}][5-R_{f}OR_{f}C(0)]C_{6}H_{3}Br (24) (V), (R_{f}OR_{f}CF_{2})C_{6}H_{5}(3)

^a The products were identified by GC/MS only.

^b Since the GC retention time of C_6H_6 was too close to the hexane (solvent for n- C_4H_9Li), the GC area% of all products could not be determined accurately. ^c $R_f^2 = C_4F_7OCF(CF_3)$ —

^d Byproducts: $R_f C(O) C_4 H_9$ (49%) and unknown (12%).

 $^{e}R_{f}OR_{f} = C_{3}F_{7}O[CF(CF_{3})CF_{2}O]_{2}CF(CF_{3})-$

Table 2

Physical properties and analysis of products

Products	Boiling point (°C/mmHg)	Isolated yield (%) [GC area%]	IR (cm ⁻¹) ^a (C=O)	MS (<i>m</i> / <i>z</i>)	Elemental analysis (calc./ found)		
					%C	%Н	%Br
Пр	79/0.008	89 [90]	1715	878; 880; 882 (M ⁺)	$\frac{24.60}{24.90}$	$\frac{0.34}{0.35}$	$\frac{18.2}{17.8}$
Щ	126/0.30	83 [92]	-	900; 902; 904 (M ⁺)	$\frac{23.97}{23.96}$	$\frac{0.33}{0.13}$	<u>17.7</u> 17.9
v	128/0.024	81 [90]	1726	1466; 1468 (M ⁺)	$\frac{\underline{24.54}}{\underline{24.60}}$	$\frac{0.20}{0.15}$	$\frac{5.45}{5.34}$
VI	110/0.02	80 [90]	-	1488; 1490 (M ⁺)	$\frac{24.18}{24.19}$	$\frac{0.20}{0.26}$	$\frac{5.37}{5.35}$
VIII	158/0.02	55 [83]	1745	2055 (M+1) ⁺ ; 2035 (M-F) ⁺	$\frac{24.55}{24.67}$	$\frac{0.15}{0.14}$	_
IX	168/0.01	75 [86]	-	2076 (M ⁺)	$\frac{24.29}{24.05}$	<u>0.15</u> 0.09	-
x	170/0.30	60 [80]	1741	2086 (M ⁺)	$\frac{\underline{24.18}}{\underline{24.52}}$	$\frac{0.14}{0.13}$	-
XI °	180/0.02	8 [12]	3615 (—OH)	2087 (M+1) ⁺ ; 2067 (M-F) ⁺	$\frac{24.75}{24.85}$	$\frac{0.34}{0.31}$	-

* Neat liquid, capillary film between NaCl plates.

^bRef. [2].

^c Byproduct from the synthesis of **VIII**.

on a Perkin-Elmer Sigma I chromatograph using a 6 ft stainless-steel column packed with 10% SE-30 on 80–100 mesh Supelcoport. The GC/MS analyses were obtained on a Finnegan 4021 mass spectrometer using either chemical ionization or electron impact mode. All new compounds were characterized by a combination of IR, GC/MS and elemental analyses (see Table 2). $R_fOR_f = C_3F_7O[CF(CF_3)-CF_2O]_2CF(CF_3)-$.

3.2. Synthesis of 1,3- Br_2 -5- $R_fOR_fC(O)$ - C_6H_3 (II)

Into a three-necked glass flask were placed diethyl ether (1800 ml) and 1,3,5-tribromobenzene (132.3 g, 0.42 mol).

The contents were cooled to -78 °C after which n-C₄H₉Li (201.0 ml of a 2.09 M solution in hexane, 0.42 mol) was slowly added over 1.5 h. After stirring the reaction for an additional 5 min, an aliquot sample removed, hydrolyzed with 1 N HCl and analyzed by GC. Analysis indicated a 93% yield of 1,3-dibromobenzene. To the above diethyl ether solution was added dropwise R_fOR_fC(O)OC₂H₅ (289.8 g, 0.42 mol) with stirring over 1.5 h. After stirring at -78 °C for an additional 30 min, the reaction mixture was hydrolyzed at -78 °C with 1 N HCl (2000 ml), phase-separated, dried over MgSO₄, solvent removed and analyzed by GC. The analysis indicated the major product II (90 GC area%). Distillation of the concentrated mixture yielded the ketone II (294.2 g, 80% yield) with a b.p. 75 °C/0.008 mmHg.

3.3. General procedure for SF_{a}/HF fluorination of ketones II, V and VIII

A 3 1 stainless-steel autoclave was charged with II [2] (274.4 g, 0.312 mol) dissolved in CFCl₂CF₂Cl (700 ml), cooled to -183 °C and evacuated. The autoclave was then charged with SF₄ (204.1 g, 1.89 mol) and HF (21.1 g, 1.1 mol) and warmed to 180 °C during a 4 h period. It was maintained at this temperature for an additional 48 h. The autoclave was cooled to room temperature, the gases vented to a storage cylinder and the vessel opened. The contents were poured over KF, filtered and the liquid passed through neutral alumina. The solvent was removed under vacuum leaving the crude product (281.1 g). Distillation under a vacuum gave III (see Table 2 for the fluorinated compounds III, VI and IX prepared by this procedure).

3.3.1. Synthesis of $3-(R_f O R_f C F_2)-5-(F_f O R_f C(O))C_6 H_3 Br(V)$ (nc)

To a diethyl ether (1000 ml) and tetrahydrofuran (300 ml) solution of 1,3-Br₂-5-($R_f OR_f CF_2$) $C_6 H_3$ (III) [2] (61.3) g, 68 mmol) was slowly added n-C₄H₉Li (28.2 ml of a 2.43 M solution in hexane, 68.5 mmol) at -78 °C over 18 min. After stirring the reaction for an additional 10 min, an aliquot sample was removed and hydrolyzed with dil. HCl. GC/MS analysis indicated complete conversion of III to the lithium intermediate IV. R_fOR_fC(O)OC₂H₅ (48.3 g, 70.0 mmol) was then added over 5 min while keeping the temperature at -78 °C. After 1 h of stirring, the mixture was hydrolyzed with a mixture of conc. HCl (10 ml) and THF (25 ml) at -78 °C. After an additional 5 min, the reaction mixture was poured into 2 N HCl (150 ml) at 0 °C, phase-separated and dried over MgSO₄. A GC/MS analysis indicated the major product V (90 GC area%) and the byproducts $3-(R_{f} OR_fCF_2$)C₆H₄Br (3 GC area%), 1-(R_fOR_fCF₂)-3- $R_fOR_f(CO)C_6H_4$ (4 GC area%) and III (2 GC area%). Distillation yielded the product V (81.2 g, 81%). See Table 2.

3.3.2. Synthesizes of $1,3-(R_fOR_fCF_2)_2-5-R_fOR_fC(O)C_6H_3$ (VIII) (nc)

To a diethyl ether (300 ml) solution of $n-C_4H_9Li$ (4.38 ml of a 2.3 M solution in hexane, 10.1 mmol) at -15 °C was added VI (5.0 g, 3.36 mmol) in diethyl ether (70 ml) over a period of 9 min. The reaction mixture was further cooled to -20 °C and R_fOR_fC(O)OC₂H₅ (6.81 g, 10.1 mmol) was added over a 2 min period while maintaining the internal temperature between -20 and -30 °C. The reaction mixture was stirred an additional 30 min. To this mixture, a precooled $(-50 \,^{\circ}\text{C})$ solution of conc. HCl $(10 \,\text{ml})$ and ethanol $(50 \,$ ml) was slowly added at -50 °C. After an additional 10 min, the reaction mixture was poured into 2 N HCl (500 ml), phase-separated and the organic layer dried (MgSO₄). A GC/MS analysis of the organic layer indicated the following: VIII (83 GC area%), $3,5-(R_fOR_fCF_2)_2C_6H_3C(OH) (OCH_3)R_fOR_f$ (XI) (12 GC area%) and 1,3-(R_f - $OR_f CF_2$ ₂ $C_6 H_4$ (4 GC area%). Distillation yielded VIII (3.8 g, 55% yield) and XI (0.56 g, 8% yield). See Table 2.

3.4. Synthesis of $1,3-(R_fOR_fCF_2)_2-5-$ [$C_2F_5O(C_2F_4O)_4CF_2C(O)$] $C_6H_3(X)(nc)$

This compound was synthesized by a similar procedure to that described above for the preparation of VIII, except that the reaction between the organolithium VII and the ester was carried out at -15 °C for 1 h. A GC/MS analysis of the organic layer showed X (80 GC area%), VI (1 GC area%) and 1,3-(R_fOR_fCF₂)₂C₆H₄ (19 GC area%). See Table 2.

Acknowledgements

This work was supported by the Materials Directorate of the Wright Laboratory, Wright-Patterson Air Force Base, OH. The authors wish to thank Dr. Chi Yu of Chemsys Inc., Dayton, OH (USA) for mass spectral analysis.

References

- L.S. Chen, G.J. Chen and C. Tamborski, J. Organomet. Chem., 193 (1980) 283.
- [2] L.S. Chen, G.J. Chen and C. Tamborski, J. Organomet. Chem., 215 (1981) 281.
- [3] L.S. Chen, G.J. Chen and C. Tamborski, J. Organomet. Chem., 251 (1983) 139.
- [4] G.J. Chen and Christ Tamborski, J. Organomet. Chem., 251 (1983) 149.
- [5] U.D.G. Prabhu, K.C. Eapen and C. Tamborski, J. Org. Chem., 49 (1984) 2792.
- [6] R.G. Jones and H. Gilman, in R. Adams (ed.), Organic Reactions, Wiley, New York, 1951, Vol. VI, p. 339.
- [7] G.J. Chen, L.S. Chen and K.C. Eapen, J. Fluorine Chem., 63 (1993) 113.
- [8] K.C. Eapen, C.S. Saba and C. Tamborski, J. Fluorine Chem., 35 (1987) 571.