EXTREME TWISTING OF THE RETINOID SIDE-CHAIN: 11-TERT-BUTYL RETINOIDS BY CATALYZED ISOMERIZATION OF β -Allenic retinals

Thea C. Norman, Angel R. de Lera and William H. Okamura*

Department of Chemistry, University of California, Riverside, California 92521

Abstract: The base-catalyzed isomerization of ll-tert-butyl-ll,l2-allenic retinal (7) afforded ll-tert-butylretinals with fixed ll-cis geometry. Similar treatment of the l3-tert-butyl-ll,l2-allenic retinal (8) provided the analogues with fixed l3-cis geometry. The extreme twisting of the retinal polyene chain in the ll-tert-butylretinals 6a,b is reflected by the observation of their dramatically blue shifted absorption maxima (~270 nm).

In order to further investigate the conformational and/or configurational requirements that the retinoids must possess for expressing their biological function,¹ and for developing insight into their spectroscopic and isomerization behavior, the synthesis and study of retinoid analogues having highly distorted side-chains such as 1-4 have become of some interest to this laboratory.² We have previously described the synthesis and spectroscopic properties of

b, $\Delta^{11} = \Delta^{13} = Z; \ \Delta^9 = E$ (11.13-dicis) c, $\Delta^9 = \Delta^{11} = \Delta^{13} = Z$ (9,11,13-tricis)

d, $\Delta^{13}=Z$; $\Delta^{9}=\Delta^{11}=E$ (13-cis)

(11-cis)

a, $\Delta^{11}=Z$; $\Delta^9=\Delta^{13}=E$

7 $R_1 = t$ -Bu, $R_2 = Me$ 8 $R_1 = H$, $R_2 = t$ -Bu

retinals incorporating a bulky tert-butyl group at the branched positions of the polyene chain (C9 and C₁₃) as in 2a-d and 4b,d, respectively.^{2,3} We wish to report here on the chemical and spectral properties of the ll-tert-butylretinals 6a-b, the most highly side chain twisted derivatives yet synthesized. The synthesis described herein is based on the prototropic rearrangement of ll,l2-vinylallenals 7 and 8 (formally referred to as 12,l4-retro-retinals⁴). We have already described the use of the thermal rearrangement of ll,l2-vinylallenes to 11-cis-retinoids, both for the preparation of the parent retinoids^{4a} and the l3-tert-butyl-retinoids 3b,d and 4b,d.^{2a},b

The incorporation of the tert-butyl group at the ll-position in the desired ll,l2-allene was accomplished by the regioselective S_N2 ' displacement of a propargylic benzoate by a higher order heterocuprate.² Trienyne 9⁵ was condensed (n-BuLi, THF, -78 °C; room temp., 20 min)

with the silyl ether derivative 10 (0.66 mol equiv., -78 °C) of 4-hydroxy-2-butanone to give in 72% yield the propargyl alcohol 11.⁷ The latter was benzoylated (n-BuLi, THF, -78 °C; PhCOCl; then room temp.) to give 12 (82%), which was reacted with $(t-Bu)_2Cu(CN)Li_2^6$ in ether at 0 °C to afford the 11,12-vinylallenic silyl ether 13 (70%). Desilylation of 13 (Bu4NF,

The complex thermal behavior (a [1,5]-sigmatropic hydrogen shift followed by a [1,7]-sigmatropic hydrogen shift) of the 11,12-vinylallene in the parent system^{4a} as well as the similarly complex thermal behavior of 13^8 led us to seek alternative methods for the rearrangement. One attractive possibility was the rearrangement of a β -allenic carbonyl compound, 9^{-12} but previous attempts to oxidize β -allenic primary alcohols such as 14 had failed. We now report that the Dess-Martin reagent 16^{13} can be effective in oxidizing a vinylallenol such as 14 to the corresponding vinylallenal. A 30% excess of the Dess-Martin reagent in anhydrous methylene chloride effects complete transformation of vinylallenols to vinylallenals within ten minutes. A 77% yield was obtained for oxidation of the 11-tert-butyl allenol 14 and a 75% yield for the 13-tert-butyl allenol 15^{2a} to afford the vinylallenals 7^{7b} and $8,^{7c}$ respectively.

Table I outlines the results for the catalyzed rearrangement of the ll-tert-butyl- and 13-tert-butyl-vinylallenals 7 and 8. Several aspects of the results deserve further comment. Table I. Base catalyzed rearrangement of 11,12-vinylallenals

=======================================					
Entry	Substrate	Products	Yield <u>d</u>		

1 <u>a</u>	7	6a (28%), 6b (28%)	56%		
2 <u>a</u>	8	4b (27%), $4d$ (27%)	54%		
<u>3b</u>	7	6a (50%), 6b (25%)	75%		
4 <u>C</u>	8	4b (20%), 4d (30%)	50%		

<u>a</u> 1.0 M NaOEt, EtOH, 0 °C, 2h; quenching with HOAc; ref. 11b. <u>b</u> Activated A1₂O₃, C₆H₆, 80 °C, 6 hours; ref. 10c. <u>c</u> Activated A1₂O₃, C₆H₆, room temperature, 48 hours. <u>d</u> Yields refer to HPLC purified compounds and account for oxidation and rearrangement steps.

Firstly, the bulky tert-butyl group imparts <u>cis</u> stereoselectivity at the double bond to which it is attached. The products derived from the ll-tert-butyl vinylallenal 7 possess ll-<u>cis</u> geometry (6a,b),^{7d},^e whereas the 13-tert-butyl-allenal 8 rearranges to give products with

 $13-\underline{cis}$ geometry (4b,d).^{2b} Secondly, the $11-\underline{cis}$ isomer obtained in entry 3 can be accounted for by a competing thermal pathway,^{4a} not by a base-catalyzed isomerization of the $11,13-\underline{dicis}$ retinal 6b to the $11-\underline{cis}$ -retinal 6a. This was corroborated by the observation that thermal treatment of $11,13-\underline{dicis}$ -retinal 6b led to apparent decomposition and not to any of its isomers (6a or possibly even $6d^{2b}$). The formation of 6d by an electrocyclic pathway^{2b} from 6b was an anticipated result; we take the lack of formation of 6d to be indicative of the bulky tert-butyl group preventing the formation of the α -pyran intermediate postulated for the interconversion of retinals containing $11,13-\underline{dicis}$ and $13-\underline{cis}$ geometries.^{2b},c,¹⁴ The stereochemistries about the Δ^{11} and Δ^{13} double bonds in 6a and 6b accrue from analysis of their ¹H-NMR spectra^{7d},^e and are supported by NOE experiments¹⁵ and the following experiment: the oxidation of the retinols 5a,b obtained by the thermal rearrangement sequence starting from 13⁸ gave the same aldehydes 6a,b as described above. Since the thermal rearrangement of 11,12-allenes is known to afford $11-\underline{cis}$ and $11,13-\underline{dicis}$ retinoids,^{2a,4a} this provides further evidence for the geometries assigned to 6a,b.

The electronic spectral data for the ll-tert-butylretinals 6a,b as well as the ll,l3-<u>dicis</u> isomers of 9-tert-butyl- and l3-tert-butylretinals (2b and 4b)^{2b} appear for comparison in Table II. It has already been observed^{2b} that the electronic spectra of the

Table II. - UV Absorption Data. For comparison purposes, the UV spectra of compounds 2b and 4b (ref. 2b) are included.

	95% EtOH	hexanes	CH ₃ CN	
	λ_{max} nm (ϵ)	λ _{max} nm (ε)	λ_{max} nm (ϵ)	
=====	***************************************	***************************************		
2ъ	234 (12,800), 278 (10,100)	216 (13,100), 234 sh (11,100)	236 (12,800), 278 (10,500)	
	344 sh (5,800)	278 (10,000), 338 sh (7,500)	346 sh (6,600)	
4Ъ	234 (19,600), 300 (25,000)	226 (18,500), 302 (24,900)	230 (19,700), 302 (25,400)	
6a	274 (20,300)	272 (20,600)	274 (20,800)	
6Ъ	270 (18,600)	268 (17,700)	272 (19,500)	

13-tert-butyl retinals 4b,c resemble those observed for the conformationally similar 12-s-cis locked retinals^{2d} while positioning a tert-butyl group at the 9-position causes a blue shift in the UV spectra.^{2b} We have observed that the ll-tert-butylretinals 6a,b exhibit a broad absorption centered at about 270 nm, which is the most blue shifted absorption maximum ever observed for a retinal analogue possessing the complete pentaenal chromophore. This clearly reflects the extremely distorted nature of the side chains of 6a,b.

Acknowledgements. The National Institutes of Health (USPHS Grant DK-16595), NATO (Postdoctoral Fellowship to A.R. de Lera), UC Riverside (President's Undergraduate Fellowship to T.C. Norman) and Badische-Anilin und Soda Fabrik, Ludwigshafen (starting material) are acknowledged for support of this study.

References and Notes

- (1) Sporn, M.B.; Roberts, A.B.; Goodman, D.S. "The Retinoids", Academic Press: New York, 1984, Vol. 1 and 2.
- (2) (a) Shen, G-Y.; de Lera, A.R.; Norman, T.C.; Haces, A.; Okamura, W.H. <u>Tetrahedron Lett</u>. 1987, 28, 2917. (b) de Lera, A.R.; Okamura, W.H. <u>Tetrahedron Lett</u>. 1987, 28, 2921. See also: (c) Chandraratna, R.A.S.; Okamura, W.H. <u>Tetrahedron Lett</u>. 1984, 25, 1003. (d)

Chandraratna, R.A.S.; Birge, R.R.; Okamura, W.H. <u>Tetrahedron Lett</u>. 1984, 25, 1007.

- (3) For a related cuprate-based incorporation of bulky (tert-butyl, Me₃Si) groups at the C-9 and C-13 positions of the retinoid side-chain, leading also to 9-cis and 13-cis geometries as in 4d, see: Ernst, L.; Hopf, H.; Krause, N. J. Org. Chem. 1987. 52. 398.
- geometries as in 4d, see: Ernst, L.; Hopf, H.; Krause, N. J. Org. Chem. 1987, 52, 398.
 (a) Sueiras, J.; Okamura, W.H. J. Am. Chem. Soc. 1980, 102, 6255. (b) For a related use of a 11,12-allene, see: Ruzziconi, R.; Schlosser, M. Angew. Chem. Int. Ed. Engl. 1982, 21, 855.
- (5) Matsumoto, M; Kuroda, K. Tetrahedron Lett. 1980, 21, 4021.
- (6) Lipshutz, B.H. Synthesis 1987, 325.
- (7) All new compounds exhibited satisfactory ¹H-NMR (200 or 300 MHz), ¹³C-NMR, IR, and UV spectra as well as low resolution and exact mass MS data. Selected ¹H-NMR data (CDCl₃) are as follows: (a) 14: δ 1.02 (6H, C_{16,17}-2CH₃, s), 1.06 (9H, t-Bu, s), 1.70 (3H, C₁₉-CH₃, s), 1.77 (3H, C₁₈-CH₃, s), 1.86 (3H, C₂₀-CH₃, s), 2.00 (2H, 2H₄, m), 2.25 (2H, 2H₁₄, t, J~6.3 Hz), 3.71 (2H, 2H₁₅, t, J~6.3 Hz), 5.77 (H, H₁₀, s), 6.08 (2H, H_{7,8}, s); (b) 7: δ 1.03 (6H, C_{16,17}-2CH₃, s), 1.08 (9H, t-Bu, s), 1.4-1.6 (4H, 2H₂ and 2H₃, two m), 1.72 (3H, C₁₉-CH₃, s), 1.82 (3H, C₁₈-CH₃, s), 1.4-1.6 (4H, 2H₂ and 2H₃, two m), 1.72 (3H, C₁₉-CH₃, s), 1.82 (3H, C₁₈-CH₃, s), 1.87 (3H, C₂₀-CH₃, s), 2.04 (2H, 2H₄, t, J~6.0 Hz), 3.03 (2H, 2H₁₄, AB geminal splitting pattern with further doublet splitting, J_{AB}~16.3 Hz and J_{14,15}~2.6 Hz), 5.78 (1H, H₁₀, s), 6.13 (2H, H₇ and H₈, s), 9.74 (1H, H₁₅, t, J~2.6 Hz); (c) 8: δ 1.023 and 1.026 (6H, C_{16,17}-2CH₃, two s), 1.09 (9H, t-Bu, s), 1.71 (3H, C₁₈-CH₃, s), 1.89 (3H, C₁₉-CH₃, d, J~1.2 Hz), 2.02 (2H, 2H₄, t, J~6.0 Hz), 3.03 (2H, 2H₁₄, m), 5.80 (1H, H₁₀, dd, J~11.3 Hz, 1.0 Hz), 6.08 (1H, H₈, d, J~16.3 Hz), 6.12 (1H, H₇, d, J~16.3 Hz), 6.31 (1H, H₁₁, dt, J~11.2 Hz, 2.5 Hz), 9.61 (1H, H₁₅, t, J~2.8 Hz); (d) 6a: δ 1.03 (6H, C_{16,17}-2CH₃, s), 1.13 (9H, t-Bu, s), 1.62 (3H, C₁₉-CH₃, s), 2.03 (2H, 2H₄, s), 5.96 (1H, H₁₄, d, J~8.0 Hz), 6.10 C (3H, C_{16,17}-2CH₃, s), 1.18 (3H, C₁₉-CH₃, s), 1.10 (9H, t-Bu, s), 1.62 (3H, C₁₉-CH₃, s), 1.72 (3H, C₁₈-CH₃, s), 2.03 (2H, 2H₄, t, J~6.0 Hz), 2.16 (3H, C₂₀-CH₃, s), 5.96 (1H, H₁₄, d, J~8.0 Hz), 6.10 (2H, 2H₃, s), 1.61 (3H, C₁₉-CH₃, s), 1.70 (3H, C₁₈-CH₃, s), 1.98 (3H, C₂₀-CH₃, s), 1.61 (3H, C₁₉-CH₃, s), 1.70 (3H, C₁₈-CH₃, s), 1.98 (3H, C₂₀-CH₃, s), 6.40 (1H, H₁₂, s), 9.82 (1H, H₁₅, d, J~8.3 Hz).
- (8) Thermolysis of 13 (~10⁻³ M solution of allene, refluxing isooctane, 12 h) followed by deprotection afforded an inseparable mixture of 11-cis (5a) and 11,13-dicis (5b) retinols together with a 20,14-retro-retinol (see ref. 4 for a related retro-retinol). Separation was achieved after selective MnO₂ oxidation of the retinols to the retinals 6a and 6b. The retro-retinol, being a non-allylic alcohol, is not oxidized with MnO₂, rendering the resulting retinals 6a and 6b easily separable.
- (9) Allenic aldehydes: Evans, R.J.D.; Landor, S.R.; Regan, J.P. J. Chem. Soc., Perkin I, 1974, 552.
- (10) Allenic ketones: (a) Cookson, R.C.; Singh, P. J. Chem. Soc. (C) 1971, 1477. (b) Zakharova, N.I.; Miropol skaya, M.A.; Filipova, T.M.; Kustanovich, I.M.; Samokhvalov, G.I. J. Org. Chem. USSR 1973, 9, 519. (c) Kuwajima, I.; Hoshino, S.; Tanaka, T.; Shimizu, M. <u>Tetrahedron Lett</u>. 1980, <u>21</u>, 3209.
- (11) Allenic esters: (a) Henrick, C.A.; Willy, W.E.; McKean, D.R.; Baggiolini, E.; Siddall, J.B. J. Org. Chem. 1975, 40, 8. (b) Amos, R.A.; Katzenellenbogen, J.A. J. Org. Chem. 1978, 43, 555. (c) Tsubol, S.; Masuda, T.; Makino, H.; Takeda, A. <u>Tetrahedron Lett.</u> 1982, <u>23</u>, 209.
- (12) Allenic amides: Fincini, J.; Bader, N.L.; Pouliquen, J. Tetrahedron Lett. 1968, 4139.
- (13) Dess, D.B.; Martin, J.C. J. Org. Chem. 1983, 48, 4155.
- (14) Such an interconversion was observed when 8 was treated under condition b of Table 1, the only isomer obtained being 4d accompanied by unreacted 8. Of mechanistic interest is the observation that treatment of 7 or 8 with activated silica gel for short periods of time afforded a single isomer, 6b or 4b, respectively, and unreacted starting material. This could indicate that a cyclic [1,5]-hydrogen shift of the Z-enol form of the vinylallenal 7,8 is taking place.
- (15) In support of the Δ¹¹ configurational assignment, saturation of the t-Bu signal of 6a and 6b caused strong enhancement of the H₁₂ resonance (6.14 and 6.40 ppm, respectively) of both isomers. Strong enhancement of the aldehyde signal (10.03 ppm) of 6a upon saturation of the C₂₀-CH₃ resonance (2.16 ppm) supports its 13-trans assignment. In support of the 13-cis geometry for 6b, saturation of the C₂₀-CH₃ resonance (1.98 ppm) resulted in enhancement of the H₁₄ resonance (5.75 ppm), but no enhancement of the aldehyde signal.

(Received in USA 1 December 1987)