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Abstract

The e�cient synthesis of a novel endocyclic sulfonamide template via a ring-closing metathesis methodology
is reported. A solid-supported variant of the Grubbs catalyst is shown to be e�ective and the suitability of
the template for both combinatorial derivatization and potential incorporation into peptidomimetics is
demonstrated. # 2000 Published by Elsevier Science Ltd.

The sulfonamide moiety is a common constituent of combinatorial small molecule libraries due
to its relative ease of derivatization and ubiquitous biological activity. The motif is a direct isostere
of the amide bond and it favorably displays signi®cantly di�erent physical characteristics.1 The
tetrahedral sulfonamide can provide a hydrolytically stable analogue of the transition state
adduct formed during the enzymatic hydrolysis of an amide linkage in a peptide.2 In addition, the
SO2NH junction may alter the conformation of a peptide.3 Cyclic, conformationally constrained
amino acids (i.e. proline,4 Freidinger lactams,5 sugar amino acids6) can alter or induce a short
peptide's speci®c secondary structure. The incorporation of a sulfonamide into novel peptidomimetics
has thus received attention7 and cyclic sulfonamide moieties may provide an area of further
interest.
As part of a program to develop highly functionalized templates for combinatorial derivatization

we report the synthesis of a novel, endocyclic sulfonamide template 1 via a ring-closing metathesis
(RCM) reaction.

The scope and functional group tolerance of the principal RCM catalysts developed by
Schrock and Grubbs has been extensively investigated and reviewed.8 However, there are few
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examples for RCM of substrates bearing a sulfonamide.9 The Grubbs ruthenium catalyst 2 is
commercially available and particularly robust.y However, its use often requires repeated
chromatography of products to remove ruthenium residues and it is non-recyclable from the
reaction mixture. Recently, Barrett addressed these issues by developing a polystyrene bound
analogue 3.10 We chose to compare the e�ectiveness of the catalysts 2 and 3 for endocyclic
sulfonamide metathesis.

The synthetic strategy towards template 1 necessitated both introduction of an allyl group a to
the carbonyl and formation of an N-allyl sulfonamide from the commercially available chloro-
sulfonylacetyl chloride 4 (Scheme 1). Reaction of the acid chloride 4 with 1 equivalent of methanol
or isopropyl alcohol in ether at 0�C gave the esters 5a and 5b, respectively, in quantitative yield.
Treatment of the methyl ester 5a with a secondary or hindered amine a�orded selective reaction
with the sulfonyl chloride.11 However, reaction with allylamine yielded complex mixtures. In
contrast, the bulky isopropyl ester 5b reacted with allylamine to give the sulfonamide 6 (91%) in
excellent yield. The nitrogen of sulfonamide 6 was protected as its tert-butyloxycarbonyl (BOC)
derivative 7 (92%) upon treatment with BOC2O and triethylamine in the presence of
4,4-dimethylaminopyridine in dichloromethane. Subsequent mono-C-allylation a to the sulfone
motif of 7 was e�ected with allyl bromide in DMF in the presence of potassium carbonate to give
the racemic RCM substrate mixture 8 in 93% yield.
Exposure of the diole®n 8 to either ruthenium catalyst 2 or 312 in 1,2-dichloroethane (0.04 M)

at 80�C for 24 h resulted in conversion to the seven-membered cyclic product 10 (79 and 84%,
respectively). The BOC group of 10 was easily removed upon treatment with TFA/dichloro-
methane to a�ord the endocyclic, divergent sulfonamide 11 (90%).13 Alternatively, removal of
the BOC protection from the acyclic substrate 8 prior to RCM using TFA/dichloromethane gave
the diole®n 9 in 97% yield. In this case, RCM of 9 mediated by either 2 or 312 in 1,2-dichloro-
ethane (0.04 M) was extremely e�cient, proceeding at room temperature in 30 min to a�ord the
cyclic sulfonamide 11 in excellent yield (93 and 95%, respectively). This observation is in contrast
with reported RCM reactions which indicate that the e�ciency of the ole®n metathesis improves
with increased bulk at a developing endocyclic nitrogen center.14 Consideration of the use of
catalysts 2 and 3 showed that both were equally active in mediating endocyclic sulfonamide

Scheme 1. (i) MeOH or iPrOH, Et2O, 0�C; (ii) 5b, allylamine, CH2Cl2, 0
�C; (iii) BOC2O, DMAP, Et3N, CH2Cl2;

(iv) allyl bromide, K2CO3, DMF; (v) TFA/CH2Cl2; (vi) 5 mol% 2 or 3, DCE, 80�C; (vii) 5 mol% 2 or 3, DCE

y Ruthenium catalyst 2 is available from Strem Chemicals, Inc. at $60.00/g.
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metathesis. However, the solid bound catalyst 3 was favorable since the crude metathesis
products obtained via its use required only a single silica gel chromatographic puri®cation to
completely remove the characteristic color of ruthenium residue impurities. The use of 2,
particularly on a large scale typically required two or three chromatographic puri®cations to
remove the brown ruthenium residue color. In addition, 3 could be regenerated for further use
from the reaction mixture by simple ®ltration. However, in contrast to the reports of Barrett the
recovered catalyst 3 was markedly less active.10 RCM of 8 and 9 in the presence of regenerated 3
gave the products 10 and 11 in lower yields (46 and 54%, respectively, 95 and 99% over recovered
starting material) than the reactions using fresh catalyst 3 (84 and 95%, respectively).
The diverse nature of the endocyclic sulfonamide template 11 and its suitability as a sca�old for

combinatorial library generation was demonstrated through matrix derivatization of two of the
three available functional groups (Scheme 2). Thus, mono-alkylation of the sulfonamide 11 with
a set of alkyl bromides in DMF in the presence of potassium carbonate proceeded in good yield
(83±95%) to a�ord the N-substituted derivatives 1215 (no C-alkylation was observed). Subsequent
hydrolysis of esters 12 with aqueous lithium hydroxide in a mixture of water/dioxane followed by
acidi®cation with hydrochloric acid gave crude acids, which were coupled with a set of amines
under standard peptide coupling conditions;16 EDCI, HOBt, DIPEA in DMF. All 16 products 13
were obtained in >95% purity after HPLC puri®cation.17

Of particular interest was the glycine methyl ester-derived compound 14.18 The orthogonally
protected ester groups of 14 should facilitate ready peptide formation at either C-terminus which
highlights the potential ease with which 14 and thus the parent sulfonamide template 1 could be
incorporated into a peptidomimetic.

In summary, we have e�ected the e�cient synthesis of a highly functionalized endocyclic
sulfonamide template 11 via a RCM reaction and demonstrated its utility for both combinatorial
library generation and potential peptidomimetic incorporation. In addition, use of the solid-supported
ruthenium catalyst 3 was evaluated and shown to facilitate high yielding sulfonamide metathesis,
simple puri®cation of products and reasonable catalyst recovery. Application of this methodology
to eight-membered ring analogues and further combinatorial library generation including
automated approaches will be reported in due course.
Experimental procedure for compound 11: 1-Hexene (1.6 ml, 12.6 mmol) and catalyst 3 (90 mg, 5

mol%) were added to a stirred solution of compound 9 (66 mg, 0.25 mmol) in 1,2-dichloroethane
(6 ml). The reaction mixture was stirred at room temperature for 30 min. TLC (ethyl
acetate:hexane, 1:3) indicated complete conversion of the starting material (Rf 0.5) to a single

Scheme 2. RBr=tert-butyl bromoacetate; 4-bromobenzylbromide; cyclopentyl bromide; 4-bromomethylbiphenyl
R1R2NH=2-aminothiazole; piperidine; glycine methyl ester; N,N,N0-trimethyl-ethylenediamine
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product (Rf 0.3). The catalyst was recovered by ®ltration (dichloromethane eluant) and the ®ltrate
concentrated in vacuo. The slightly colored residue was puri®ed by ¯ash chromatography (ethyl
acetate:hexane, 1:3) to yield 11 (56 mg, 95%) as a white solid.13
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