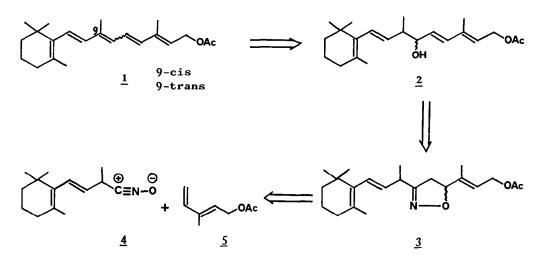
A [3+2] NITRILE OXIDE CYCLOADDITION APPROACH TO RETINOIDS

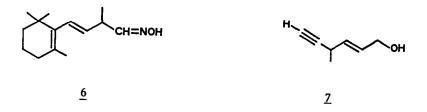
Pier Giovanni Baraldi , Achille Barco , Simonetta Benetti , Mario Guarneri , Stefano Manfredini , Gian Piero Pollini and Daniele Simoni


Dipartimento Scienze Farmaceutiche-Università di Ferrara Dipartimento Chimico-Università di Ferrara

<u>Summary</u>: The C-20 retinoid carbon skeleton was assembled through a C(14) + C(6) approach by interception of the nitrile oxide derived from the C(14) aldehyde component with a C(6) diene dipolarophile, followed by  $Mo(CO)_{6}$ -promoted ring opening of the derived 3,5-disubstituted isoxazoline.

Vitamin A and its various derivatives continue to receive considerable attention both from a synthetic and a pharmacological point of view. Of particular importance are the biological roles which they play as anticancer agents.  $^{1,2}$ Consequently many synthetic routes have been developed and since the subject was comprehensively reviewed in 1978<sup>3</sup>, many more syntheses have appeared,  $^{4,5}$ reflecting the substantially increased interest in the field. One of the most convergent approach to the assemblement of the C(20) skeleton of this class of compounds, incorporating a pentaene system as the most salient structural feature, involves the coupling of a C(14) aldehyde component with a C(6) Grignard fragment. We wish to report in this letter a new strategy that has evolved from our la-

boratories culminating in the construction of the C(20) carbon atoms framework of the immediate precursor <u>2</u> of Vitamin A and its 9-cis isomer, as retrosynthetically depicted in the Scheme.

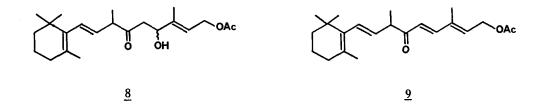

1307



This approach differs significantly from the previous ones in the way it addresses the crucial carbon-carbon bond forming step. In fact we have employed a  $\begin{bmatrix} 3+2 \end{bmatrix}$  cycloaddition of the nitrile oxide <u>4</u> to the alkene <u>5</u> to form the 3,5--disubstituted isoxazoline <u>3</u>.

In recent years this key tactical element has emerged as a powerful tool for preparing highly functionalized carbon chains<sup>6</sup> and will be given further impetus by our recent discovery<sup>7</sup> that the masked functions retained in this versatile heterocyclic ring can be unveiled under non-hydrogenolytic conditions.

According to the scheme the opening move required the key materials  $\underline{4}$  and  $\underline{5}$ , which were easily obtained starting from two commercially available compounds, namely B-ionone and trans-3-methyl-2-penten-4-yn-1-ol. The first was converted via Darzens reaction by a known procedure <sup>8</sup> in 90% yield into the C-(14) aldehyde, the corresponding oxime <u>6</u> being the precursor of <u>4</u>, while the second was easily taken to <u>5</u>, the C(6) component, by selective hydrogenation of the triple bond of <u>7</u> in the presence of Lindlar catalyst, followed by standard ace-tylation (Ac<sub>2</sub>0, Py, DMPA, r.t.).




The cycloaddition of the nitrile oxide  $\underline{4}$  generated from the oxime  $\underline{6}$  following

Torrsell's directions <sup>9</sup> into the diene 5 took place regio- and chemoselectively to produce the 3,5-disubstituted-isoxazoline 3, accomodating the C(20) carbon atom framework of the targets 1, in good yield.\*

Cleavage of the labile N-O bond was then easily accomplished by treatment of  $\underline{3}$  with Mo(Co)<sub>6</sub> in wet acetonitrile<sup>7</sup> to afford in 60% yield the B-hydroxy-ketone 8.

Conversion of <u>8</u> to the  $\alpha$ , B-unsaturated ketone <u>9</u> was facilitated by prior conversion to the corresponding methansulfonate ester.



Thus exposure of <u>8</u> to methansulfonyl chloride and triethylamine (0.5 h at 0°C, 5 h at room temperature) afforded <u>9</u> as an oil in 70% yield as sole product (HPLC).A doublet centered at 6.2 (J=16Hz) and a doublet centered at 7.1 (J= 16Hz) allowed the assignement of the E-geometry of the newly generated double bond.

Completion of the synthetic pathway was achieved by treatment of  $\underline{9}$  with sodium borohydride at -10°C for 10 min. providing the known  $\underline{2}$  yield in 90%, whose efficient transformation to both Vitamin A and its 9-cis isomer had been already described in the literature.<sup>10,11</sup>

In conclusion we have developed a flexibile approach to retinoids which not only constitutes a formal synthesis of these compounds through a protocol easily amenable to large scale preparation, but is also applicable to the preparation of analogues which can be used to probe the functional groups responsible for biological activity.

<u>Acknowledgement</u>: Financial support of this work by CNR and Ministero Pubblica Istruzione (40%) is gratefully acknowledged.

Notes and references

<sup>1</sup> B.A.Pawson, C.W.Ehmann, L.M.Itri and M.I.Sherman, <u>J.Med.Chem.</u> <u>25</u>, 1269 (1982)

- 2 M.B.Sporn, A.B.Roberts and D.S.Goodman, "The Retinoids", Academic Press, New York, Vol. 1 and 2 (1984).
- 3 R.S.H.Liu and A.F.Asato, <u>Tetrahedron</u> 40, 1931 (1984).
- 4 J.Otera, H.Misawa, T.Onishi, S.Suzuki and Y.Fujita, <u>J.Org.Chem.</u> <u>51</u>, 3834 (1986)
- 5 T.Onishi, M.Shiono, S.Suzuki and Y.Fujita, Synth.Comm. 17, 257 (1987)
- 6 G.Desimoni, G.Tacconi, A.Barco and G.P.Pollini, "Natural Products Synthesis through Pericyclic Reactions" A.C.S. Washington (1983)
- 7 P.G.Baraldi, A.Barco, S.Benetti, S.Manfredini and D.Simoni, <u>Synthesis</u>, 276 (1987)
- 8 V.Ramamurthy, G.Tustin, C.C.Yau and R.S.Liu, <u>Tetrahedron</u> <u>31</u>, 193 (1975)
- 9 K.E.Larsen and K.B.G.Torsell, Tetrahedron 40, 2985 (1984)
- \* All compounds gave spectral and analytical data consistent with the assigned structures. The spectroscopic data of selected compounds are reported:

<u>2</u>: oil; UV (MeOH):  $\lambda_{max}$  235 nm (  $\epsilon$  18000); IR (neat) 3450, 1740, 1640, 1610 cm<sup>-1</sup>; HNMR  $\delta$  0.95 (s, 6H), 1.2-1.6 (m, 4H), 1.15 (d, 3H, J=6Hz), 1.68 (s, 3H), 1.74 (s, 3H), 1.9 (m, 2H), 2.1 (s, 3H), 2.35 (m, 2H), 3.9 (m, 1H), 4.7 (d, 2H, J=6.5Hz), 5.3 (dd, 1H, J=15.5Hz and 8Hz), 5.5 (brt, 1H), 5.67 (dd, 1H, J=16Hz and 8Hz), 5.95 (d, 1H, J=15.5Hz), 6.3 (d, 1H, J=16Hz).

<u>3</u>: oil; IR (neat) 1740 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.95 (s,6H), 1.2-1.6 (m,4H), 1.3 (d,3H,J=6Hz), 1.62 (s,6H), 1.9 (m,2H), 2.0 (s,3H), 2.85 (m,2H), 3.3 (m, 1H), 4.5 (d,2H,J=6.5Hz), 4.87 (brt,1H), 5.25 (dd,1H,J=15.5 and 8Hz), 5.6 (brt,1H), 5.9 (d,1H,J=15.5Hz).

<u>8</u>: oil; IR (neat) 3450, 1740, 1710 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.95 (s,6H), 1.1-1.6 (m,4H), 1.2 (d,3H,J=6Hz), 1.6 (s,3H), 1.67 (s,3H), 1.9 (m,2H), 2.02 (s, 3H), 2.7 (m,2H), 3.2 (m,2H), 4.4 (m,1H), 4.5 (d,2H,J=6.5Hz), 5.25 (dd, 1H,J=15.5 and 8Hz), 5.6 (brt,1H), 6.0 (d,1H,J=15.5Hz). <u>9</u>: oil; UV (MeOH):  $\lambda_{max}$  278nm (£24400); IR (neat) 1740, 1680, 1630, 1600 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.95 (s,6H), 1.1-1.6 (m,4H), 1.2 (d,3H,J=6Hz), 1.6 (s,3H), 1.9 (m,2H), 2.05 (s,3H), 3.4 (m,1H), 4.6 (d,2H,J=6.5Hz), 5.2 (dd, 1H, J=15.5 and 8Hz), 5.8 (brt, 1H), 5.95 (d, 1H, J=15.5Hz), 6.2 (d,1H,J=16Hz),

- 7.1 (d, 1H, J=16Hz).
- 10 N.A.Milas, U.S.Patent 2,567,572,Sept.11, 1951; Chem.Abstracts, 2578h, <u>46</u> (1952)
- 11 H.Oediger, H.Kabbe, F.Möller and K.Eiter, <u>Ber.</u> <u>99</u>, 2012 (1966). (Received in UK 25 January 1988)