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ABSTRACT: Peyssonnoside A is a marine-derived sulfated diterpenoid glucoside with a unique 5/6/3/6 tetracyclic skeleton with a
highly substituted cyclopropane ring deeply embedded into the structure. Herein, we report the first total synthesis of this natural
product in a concise, efficient, scalable, and highly diastereoselective fashion. The aglucone peyssonnosol was synthesized in 21%
overall yield after 15 steps, featuring a Simmons−Smith cyclopropanation and Mukaiyama hydration, fully controlled by the spatial
structure of the substrates.

Marine natural products are of great importance and
interest in modern chemistry due to the broad scope of

biological activity and structural diversity they provide.1,2 In
particular, polycyclic strained structures containing small rings,
such as, e.g., cyclopropanes, constitute synthetically challenging
targets.3 To date there are only a few examples of polycyclic
natural products with densely substituted cyclopropanes being
successfully synthesized.4−8

In 2019, Kubanek and co-workers9 reported the isolation of
two marine sulfated diterpene glucosides, peyssonnosides A
(1) and B (2), from the red alga Peyssonnelia sp. sharing the
same diterpenoid core with a highly substituted and sterically
encumbered cyclopropane ring, which were shown to have
promising activity against liver stage Plasmodium berghei and
moderate antimethicillin-resistant Staphylococcus aureus
(MRSA) activity. The unusual and complicated structure
combined with the diverse biological activity render
peyssonnosides challenging yet promising molecular targets
for synthetic organic chemists (Scheme 1). Salient features of
the peyssonnoside diterpenoid core include (1) a unique and
unprecedented tetracyclic 5/6/3/6 carbon framework with a
pentasubstituted cyclopropane ring deeply embedded into the
structure (Scheme 1); (2) seven stereogenic centers out of
which six are contiguous; (3) three quaternary contiguous
stereocenters; and (4) a pentasubstituted cyclopropane ring. In
addition, the sulfated β-linked glycoside poses an additional
challenge due to the tertiary nature of the hydroxy group in the

aglucone 3, which can lead to elimination and orthoester
byproducts instead.
Our retrosynthetic analysis started with the search for the

most appropriate approach to tackle the cyclopropane
moiety.10 Functional modification of the aglucone 3
(peyssonnosol, Scheme 1) to 4 provides a useful intermediate
accessible via ring-closing metathesis (RCM). Further
disconnection led to cyclopropane 6 via a postulated Cu-
mediated Corey−House reaction.11 In turn, 6 was assumed to
be accessible via Simmons−Smith cyclopropanation,12,13

leading to the intermediate 7, which in turn can be traced
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Scheme 1. Retrosynthetic Analysis
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back to precursors 814 and 915 known in the literature via
Robinson annulation.16

The required starting materials were prepared according to
procedures known from the literature: 9 from 2-methyl-2-
cyclopenten-1-one (11) in 1 step in 95% yield15 and 8 from γ-
valerolactone (10) in 3 steps (one pot) in 50% overall yield
(Scheme 2).14 Mukaiyama-type Michael addition of 9 to 8

furnished diketone 12 via diastereoselective formation of the
C(9)−C(10) in 91% yield as a single diastereoisomer as
observed by NMR spectroscopy. The reaction was performed
under Lewis acid catalysis in a BF3·Et2O/i-PrOH system at
−20 °C, initially developed by Poirier and co-workers.17 Then,
diketone 12 was treated with an excess of NaOMe in MeOH at
55 °C to complete the Robinson annulation sequence and the
construction of the B ring.16 To account for the partial
desilylation during the cyclization step, the intermediate
cyclized product was treated with TBSCl/Im-H, providing

the bicyclic enone 13 in 85% yield. This enone was further
diastereoselectively reduced under Luche conditions to afford
allylic alcohol 14 in 95% yield, via an exclusive pseudoequa-
torial attack of the carbonyl group by the borohydride
species.18−20 This intermediate set the stage for a challenging
step in our synthetic route, the Simmons−Smith cyclo-
propanation of a tetrasubstituted double bond with a
monosubstituted carbenoid. Fortunately, we were delighted
to find that the original conditions developed by Furukawa and
co-workers21 performed with iodoform delivered the desired
product 14 in 55% yield as a single diastereoisomer, thus
successfully furnishing the cyclopropane C ring construction. A
strong cross-peak between protons at C(1) and C(18) in
NOESY experiments provided excellent evidence for the
assigned configuration. Lowering the addition temperature to
0 °C allowed an increase in the yield up to 72%. Further
investigation of this step demonstrated that the addition order
of the reagents is of paramount importance for the success of
the transformation. Treating the alcohol first with diethylzinc
ensured the formation of mixed zinc alkyl-alkoxide species,
further improving the directing group ability of the alkoxide.
Subsequent addition of the iodoform solution presumably led
to the formation of a Zn carbenoid species bonded directly to
the alkoxide and thus close to the double bond, which is
hypothesized to be key to the success of this reaction. Of
central importance to note was that only one out of four
possible diastereoisomers was observed. The syn-reaction (to
OH) of the cyclopropane is guided by the alkoxide group
directing effect, which moreover allowed for the energetically
more stable cis-A,B-ring formation. The exo-I installation can
be attributed to the steric effect of the axial methyl group
C(18), blocking the interior of the down side of the molecule.
Overall, Simmons−Smith cyclopropanation led to the
successful installation of three stereocenters in one step.
The obtained iodocyclopropane 15 was further protected

with TMSCl/Im-H for the subsequent Corey−House cross-
coupling.22,23 Cu-mediated sp3−sp3 coupling was experimen-
tally assessed to be more robust and reliable when compared to
conventional cross-coupling catalysts.24−26 Iodocyclopropane
16 was first lithiated with t-BuLi, and the thus formed lithium
species was treated with the Cu source to form an
organocopper intermediate, which was further reacted with
methallyl bromide. Among the different copper sources [Li(2-
Th)CuCN, CuCN, CuI, CuSCN, and CuSPh] evaluated,
CuCN was experimentally established to be the most efficient,
providing the product in 94% yield after desilylation of the
intermediate with TBAF, cleanly furnishing the C(1)−C(2)
bond formation. The obtained enediol 17 was further
submitted to the Grieco dehydration protocol27,28 in order
to convert the primary RCH2CH2OH functionality of 17 to
the corresponding vinyl group. The formation of the
corresponding 2-nitrophenylselenoether was selective and
efficient (92%). However, the subsequent elimination step
presented experimental challenges; typical procedures for the
oxidation of the substrate with an excess of H2O2 in DCM or
THF were found to be slow, irreproducible, and prone to
epoxidation of the terminal olefin of the methallyl side chain.
Subsequent experimentation identified the addition of 1.0
equiv of m-CPBA at 0 °C as crucial for clean oxidation in less
than 5 min, and subsequent addition of NEt3 with stirring at
room temperature (RT) for 2 h afforded the corresponding
dienol 18 in 81% yield (over the two steps). RCM of dienol 18
with 1 mol % of second-generation Hoveyda−Grubbs

Scheme 2. Synthesis of Peyssonnosol (3)
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catalyst29,30 furnished the quantitative formation of the D cycle
in 19 in less than 4 h at RT on a gram scale. Thus, at this point,
we achieved a robust, efficient, and scalable construction of the
unique tetracyclic 5/6/3/6 backbone of the peyssonnosides in
only 8 steps in 38% overall yield, which enables routes to
structural derivatives that can be used for biological
investigations.
With the tetracyclic skeleton of the target diterpenoid

prepared, the next steps included the functional group
modification in order to install all required functionalities in
peyssonnosol (3). First, the alcohol 19 was quantitatively
converted to the corresponding ketone (20) via Ley−Griffith
oxidation31 with TPAP/NMO. It is noteworthy that ketone 20
provides an interesting example of the anisotropic magnetic
effect of the carbonyl group: the methylene protons at C(5)
display a 1.55 ppm difference in chemical shifts. With the
ketone 20 in hand, the Mukaiyama hydration protocol32 was
attempted; however, no conversion was observed. At the time
of these failed attempts, an anaerobic Mukaiyama hydration
protocol with a large scope of terpenoids was published by
Studer and co-workers.33 This method involved the use of
nitroarylsulfonate B and Fe catalysis, which led to the tertiary
alcohol 21 in good yield (71%). The hydration afforded only
one diastereoisomer 21, which was assigned to be the desired
one based on 2D NMR experiments and computation of DP4+
probability (>99.9%).34 The high facial selectivity could be
explained with structural rigidity of the ketone 20, with the
C(12) methylene group effectively blocking one side of the
double bond from the attack, which gives an interesting
example of exclusive diastereoselectivity governed by molecule
topology.35 The obtained ketoalcohol 21 was further
submitted to Wittig methylenation under standard condi-
tions36 (Ph3PMeBr/KOt-Bu) affording the corresponding
unsaturated alcohol 22 in 98% yield. The diastereoselectivity
of the hydrogenation of compound 22 proved to be highly
dependent on both the catalyst and solvent ranging from 1:6.8
for (Ph3P)3RhCl in toluene to 4.7:1 for Rh/Al2O3 in EA/
MeOH (1:1); however, the conversion was almost always
quantitative. Fortunately, the diastereisomeric mixture can be
easily separated by standard flash column chromatography.
Thus, with the installation of the C(7) hydrogen atom, our
synthesis of racemic peyssonnosol (3), the tetracyclic 5/6/3/6
diterpenoid core of peyssonnosides A−B (1−2), was
accomplished. It was achieved in only 12 steps from a
compound known from the literature and in 21% overall yield
with high diastereoselectivity. The developed route is scalable,
and more than 0.5 g of 3 was prepared in a single run.
With 3 in hand, we moved to the glucosylation stage of

synthesis (Scheme 3). As a glucosyl donor, we favored the
trichloroacetimidates introduced by Schmidt and co-workers37

due to the mild activation conditions needed for the
reaction.38,39 In order to be able to install sulfate functionality
at C(2′), this position should be orthogonally protected from
the other hydroxy groups of the glucosyl donor. The best
match for our purposes was the compound 23, easily accessible
from D-glucose in 7 steps.40 With the glucoside donor in hand,
we attempted the glucosylation. However, it turned out that
typical conditions (TMSOTf,41 BF3·Et2O

39) led to the
complete decomposition of peyssonnosol (3) (most probably,
through dehydration), which was associated with high acid
sensitivity of the peyssonnosol (3). As a consequence, it was
hypothesized that other frequently used activators (Ln-
(OTf)3,

42,43 Tf2O,
44 etc.) would not work due to their high

oxophilicity, and in our case, more nitrophilic activators are
needed. For that role, three candidates were evaluated
(Cu(OTf)2,

45 AgOTf,46 and (PhCN)2Pd(OTf)2
47), and

AgOTf led to the best performance. After some optimization
runs, 3 equiv of the glucoside donor 23 and 1 equiv of AgOTf
in DCM at RT after 5 h provided 98% yield of the 1:1
diastereomeric mixture of glucosides of both peyssonnosol (3)
enantiomers (24 and 25). This mixture can be separated by
flash column chromatography on silica gel with CHCl3. The
less polar component was identified to be the desired one
based on the comparison between the relative positions of
proton signals at C(18) and C(1) in 1H NMR spectra and the
corresponding data from the isolation study,9 assuming that
further peripheral modification would not change the core
geometry. Isolated yields were 88% and 78%, respectively,
based on both enantiomers of 3. Based on J-coupling constant
analysis of protons at C(1′) and C(2′) (7.9 Hz for 24 and 7.8
Hz for 25), both glucosides were assigned as pure β-isomers.
The diastereoisomer 24 was further hydrolyzed with KOH/
MeOH and sulfated on the hydroxy group without
intermediate purification affording the sulfate 26 in 93%
yield. Hydrogenolysis of the benzyl groups over Pearlman’s
catalyst afforded peyssonnoside A (1) in 99% yield. All
characterization data (1H and 13C NMR, HRMS, [α]D)
matched those reported for the isolated natural product.
Therefore, we achieved the first total synthesis of enantiopure
peyssonnoside A in only 15 steps.
The synthesis can be optimized further by an enantiose-

lective approach to peyssonnosol (3, Scheme 4) with the
asymmetric 1,4-addition step to 11 as a key challenge. In
general, this chemistry is well-developed,48 yet 2-methyl-2-
cyclopenten-1-one (11) turned out to be a quite challenging
substrate, for which it is difficult to achieve high
enantioselectivity.49−51 Quinkert and co-workers52 reported
in 1992 that isopropenyl lithium can be asymmetrically added

Scheme 3. Completion of the Synthesis
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to 11 in the presence of excess of O-methyl-D-prolinol (SMP)
affording the desired (R)-enantiomer of 27 with 60−89% ee,
which was used in a (+)-confertin synthesis.53 This method
was adopted for our synthesis. Consequently, the product of
the asymmetric 1,4-addition (+)-27, obtained in 85:15 er, was
first converted to the corresponding silyl enol ether (+)-28,
which was further submitted to the Mukaiyama-type Michael
addition step, as described above. The product (+)-29 was
then hydrogenated with Wilkinson’s catalyst to give (+)-12 in
85% yield. This product was converted to (−)-peyssonnosol
(3) with the sequence described above. (−)-Peyssonnosol (3)
was also glucosylated and gave the desired diastereomer 24 in
82% yield, further confirming the absolute configuration of 27
as shown.
In conclusion, we have achieved the first total synthesis of

peyssonnoside A (1). The natural product was prepared in
synthetic form in 15 steps with its diterpenol core
[peyssonnosol (3)] prepared in only 12 steps from literature-
known compound 8, which is accessible in a 3 step one pot
fashion from a commercial starting material. Key features of
the synthesis include (1) construction of the B ring via
Robinson annulation, (2) installation of the pentasubstituted
cyclopropane C ring via highly diastereoselective Simmons−
Smith cyclopropanation with iodoform, (3) construction of the
D ring via RCM of the diene 18 successfully obtained through
Corey−House cross-coupling, (4) installation of the isolated
stereocenter at C(3) with a highly diastereoselective anaerobic
Mukaiyama hydration, and (5) efficient and β-selective
Schmidt glucosylation with subsequent sulfation of the
hydroxy group at C(2′). All 7 stereocenters were installed in
a highly diastereoselective fashion, harnessing the intrinsic
substrate bias. The synthetic route was also modified to allow
access to the preparation of the enantiopure core. For the first
time, the synthesis paves the way to the 5/6/3/6 tetracyclic
skeleton with a pentasubstituted cyclopropane ring.
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