ORIGINAL PAPER

Regioselective and efficient synthesis of N^7 -substituted adenines, guanines, and 6-mercaptopurines

Michal Maryška · Naděžda Chudíková · Vladislav Kotek · Dalimil Dvořák · Tomáš Tobrman

Received: 15 October 2012/Accepted: 4 December 2012/Published online: 1 February 2013 © Springer-Verlag Wien 2013

Abstract A simple and efficient protocol for the preparation of N^7 -substituted adenines, guanines, and 6-mercaptopurines is described. The key step is the regioselective preparation of 7-substituted 6-chloropurines which are building blocks for the divergent synthesis of adenines, guanines, and 6-mercaptopurines by known procedures.

Keywords Heterocycles · Nucleophilic substitution · Alkylation · Staudinger reaction

Introduction

Purine is a well-known heterocyclic scaffold which frequently occurs in nature [1] as well as a part of biologically active compounds. The biological activity of natural purine compounds has led to systematic studies of the properties and reactivity of novel purine derivatives [2–9]. Therefore, it is not surprising that N^9 -substituted adenines, hypoxathines, and guanines exhibit interesting biological activities. In view of these findings, some N^7 -substituted adenines have been designed, prepared, and tested for their biological properties [10–13]. Indeed, some N^7 -substituted adenines showed antiviral [14, 15] and anticancer [16] activities. In addition, A_{2A} and A_{2B} receptor ligands [17], VEGF-R and EGF-R inhibitors [18], ATP-competitive kinase inhibitors [19], and inhibitory activity against pathogenic protozoa [20] have been described in the literature. Some

M. Maryška · N. Chudíková · V. Kotek · D. Dvořák · T. Tobrman (🖂)

Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic e-mail: tomas.tobrman@vscht.cz N^7 -substituted 6-mercaptopurines also show cytotoxic activity [21, 22] and 6-chloro-7-methyl-7*H*-purine is a radiolabeled probe for assessing glutathione-conjugate efflux systems in the brain [23]. Besides that, various N^7 -substituted adenines and guanines have been prepared as standards of DNA adducts of the styrene metabolites [24–27].

The classical approaches to N^7 -substituted purines rely on the laborious cyclization of diaminopyrimidine derivatives [28] or on the direct alkylation of simple purine bases which, however, usually affords a mixture of regioisomers. Thus, adenine is preferentially N^3 -alkylated [29] and alkylation of hypoxanthine produces a mixture of monoand disubstituted products [29-33]. Only in several limited cases can significantly regioselective formation of N^7 -substituted adenines, guanines, and hypoxanthines be achieved. For instance, the alkylation of N^3 -benzyladenine followed by debenzylation affords N^7 -substituted adenines [34, 35] and the alkylation of N^6 -[(dimethylamino)methylene]adenine proceeds exclusively at the N^7 -position [36]. Temporary N^9 -protection of adenine and guanine by a trityl protecting group followed by the reaction with strong alkylating reagents also enables a regioselective way to N^7 -substituted adenines and guanines [15].

However, the scope of the reported protocols is limited. As a part of our ongoing research activities we have developed [37, 38] an easy and high-yielding methodology for the synthesis of N^7 -substituted 6-chloropurines. The presence of a halogen in a series of readily available 7-alkyl-6-chloro-7*H*-purines can be, in principle, used for further derivatization to obtain 7-substituted adenine, hypoxanthine, and guanine derivatives. Therefore, we decided to test the combination of our protocol for the synthesis of 7-substituted 6-halopurines with subsequent halogen displacement by known methods for the preparation of new

 N^7 -substituted adenine, hypoxanthine, or guanine derivatives with potential biological activities.

Results and discussion

The following described protocol [37, 38] is based on the conversion of 6-chloropurine (1a) and 6-chloropurine-2-amine (1b) to the corresponding 9-Boc derivatives, reduction to the 7,8-dihydropurines, their N^7 -alkylation followed by deprotection and oxidation. 7-Alkylpurines 2a-2f, 3b, and 3d were obtained in 54-78 % isolated yields. At first we focused on the preparation of hypoxanthine analogues. Heating of **2a–2e** with formic acid [39] led to the 7-substituted purines 4a-4e in almost quantitative yields (Table 1, entries 1–5; Scheme 1). The reaction conditions are compatible with methyl, allyl, and propargyl groups (Table 1, entries 1–3) but also ester and keto groups (Table 1, entries 4, 5). The reaction of 7-substituted 6-chloropurine-2-amines 3b and 3d was also smooth giving the guanine derivatives 5b and 5d in almost quantitative vield (Table 1, entries 5, 6). Table 1 also shows the overall yields of the derivatives 4 and 5, starting from 1a or 1b, respectively, which are 51-73 %.

The above results encouraged us to test the reaction of 7-substituted chloropurines with NaSH. Thus, a series of 7-substituted 6-chloro-7*H*-purines **2a**, **2d**, **2e**, **3b**, and **3d** were treated with a solution of NaSH in dry DMF at ambient temperature. TLC analysis of the crude reaction mixture revealed complete conversion of the starting materials to the mercaptopurines **6** and **7** within 2 h. The isolated yields were almost quantitative (Table 2).

The most straightforward route to the substituted adenines from halopurines is halogen displacement of halopurines with ammonia [40], but this involves harsh reaction conditions. Therefore, we used a two-step protocol

Table 1 Regioselective synthesis of N^7 -substituted hypoxanthines **4** and N^7 -substituted guarantee **5** starting from N^7 -substituted halopurines **2** or **3**

Entry	Starting compound, R (yield/% from 1a or 1b) [38]	Product, yield/% ^a (overall yield/%) ^b 4a , 95 (73)	
1	2a , Me (77)		
2	2b , CH ₂ =CHCH ₂ (78)	4b , 87 (68)	
3	2c , HCCCH ₂ C (76)	4c , 93 (71)	
4	2d , CH ₃ CHCO ₂ Me (62)	4d , 90 (56)	
5	2e , C ₆ H ₅ COCH ₂ (54)	4e , 94 (51)	
6	3b , CH ₂ =CHCH ₂ (58)	5b , 96 (56)	
7	3d , CH ₃ CHCO ₂ Me (72)	5d, 97 (70)	

^a Isolated yield

^b Overall isolated yield starting from **1a** or **1b**

Scheme 1

Table 2 Synthesis of N^7 -substituted 6-mercaptopurines 6 and 7 starting from N^7 -substituted halopurines 2 or 3

Entry	Starting compound, R	Product, yield/% ^a (overall yield/%) ^b	
1	2a , CH ₃	6a , 96 (74)	
2	2d , CH ₃ CHCO ₂ Me	6d , 97 (60)	
3	2e , $C_6H_5COCH_2$	6e , 97 (52)	
4	3b , CH ₂ =CHCH ₂	7b , 89 (52)	
5	3d , CH ₃ CHCO ₂ Me	7d , 87 (63)	

^a Isolated yield

^b Overall isolated yield starting from **1a** or **1b**

relying on the chemistry of azides [41–43]. The first step, reaction of the chloropurines 2b, 2d-2f, and 3b with sodium azide, proceeded smoothly in DMSO at 60 °C (Scheme 2) and the corresponding azides were isolated in high yields (Table 3). An exception was the substrates bearing phenacyl and allyl groups (8e and 9b, respectively), which were formed in only moderate yields of 54 and 74 % (Table 3, entries 3, 5). The structure of the obtained azides was confirmed using ¹H and ¹³C NMR, which showed the previously reported azido-purine fused tetrazole tautomerism [41-43]. The azide reduction appeared to be more complicated. The palladium-catalyzed hydrogenation, offering a simple and efficient method [44, 45], failed in this case, because the allylic double bond in **3b** was hydrogenated together with the azide. Therefore, we turned our attention to the Staudinger reaction which is compatible with a wide variety of functional groups. Thus, the reaction of 8f with triphenylphosphine in THF at 60 °C furnished the expected azaphosphorane 13 in 95 % yield (Fig. 1). Its structure was determined by ¹H and ¹³C NMR spectroscopy. The hydrolysis of 13 in a mixture of acetic acid/THF/water (2:6:1) proceeded smoothly, and the desired aminopurine 10f was isolated in 97 % yield. The structure of **10f** was proved by ¹H, ¹³C NMR along with HMBC and HMQC correlations. The above two-step

Table 3 Synthesis of N^7 -substituted adenines **10** and **11** starting from N^7 -substituted halopurines **2** and **3**

Entry	Starting compound, R	Product, yield/% ^a	Product, yield/% ^b	Overall yield/% ^c
1	2b , CH ₂ =CHCH ₂	8b , 89	10b , 85	59
2	2d , CH ₃ CHCO ₂ Me	8d, 95	10d , 75 ^d	44
3	2e, C ₆ H ₅ COCH ₂	8e , 54	10e, 58	17
4	2f , C ₆ H ₅ CH ₂	8f , 96	10f, 90	74
5	3b , CH ₂ =CHCH ₂	9b , 74	11b , 85	36

^a Overall isolated yield from 1a or 1b

^b Overall isolated yield from 2 or 3

^c Overall isolated yield from **1a** or **1b**

^d R = CH₃CHCO₂H

Scheme 2

Fig. 1 Structures of 7-substituted purines 12-14

reaction can also be done in a one-pot manner. In this way the reflux of 8f and triphenylphosphine in an acetic acid/THF/ water mixture for 24 h gave **10f** in 90 % yield (Table 3, entry 4). This one-pot protocol was also successfully applied to the transformation of 8b and 9b to 10b and 11b, respectively, in 85 % yields (Table 3, entries 1, 5). In the case of the phenacylpurine 8e the yield of 10e was 58 % because the product was isolated from a complex reaction mixture by tedious chromatography. Interestingly, the formation of acid 10d along with azido to amino group transformation was observed during the reaction. In addition, N^6 -alkyladenines are available via reaction of 7-substituted 6-chloropurines with N-alkylamines as demonstrated by the reaction of 2a with morpholine in acetonitrile at 70 °C, where the corresponding morpholinopurine 14 (Fig. 1) was isolated in 94 % yield. Similarly, 6-chloro-7-methylpurine reacted smoothly with sodium methoxide in dry methanol at room temperature affording 6-methoxy-7-methyl-7H-purine (12) in 91 % isolated yield (Fig. 1).

In summary, we showed that the combination of our protocol for the regioselective synthesis of 7-alkyl-6chloropurines with known procedures for the nucleophilic displacement of the chlorine in 6-chloropurines can be used as a versatile tool for the synthesis of N^7 -substituted adenines, guanines, hypoxanthines, and 6-mercaptopurines from 6-chloropurine (1a) or 6-chloropurine-2-amine (1b). Hypoxanthines 4a-4e, 5b, and 5d were prepared by heating chloropurines 2 or 3 with formic acid. The overall yields of 4a-4e, 5b, and 5d starting from 1a and 1b ranged from 51 to 73 %. 6-Mercaptopurines 6a-e, 7b, and 7d were prepared by the reaction of 2 or 3 with sodium hydrosulfide in 52-74 % overall yields. Finally, the preparation of 7-substituted adenines was achieved by a two-step protocol based on the Staudinger reaction. In the first step 6-chloropurines 2 and 3 were converted to the corresponding azides 8 and 9 by the reaction with sodium azide. The second step, one-pot Staudinger reaction, was achieved by refluxing of azides 8b, 8d-8f, or 9b with triphenylphosphine in acetic acid/THF/water. In this way N^7 -substituted adenines 10b, 10d-10f, and 11b were prepared in 17-60 % overall yields starting from 1a and 1b. Further application of 7,8-dihydropurines in the synthesis of novel purine derivatives and their biological evaluation is ongoing in our laboratory.

Experimental

All reactions were performed under an argon atmosphere. ¹H (300 or 500 MHz) and ¹³C (75 or 125 MHz) NMR spectra were measured on Varian Gemini 300 or Bruker Avance III 500 instrument. Mass spectra (HRMS-ESI) were recorded on a LTQ Orbitrap Velos spectrometer (Thermo Scientific). The solvents were dried and degassed by standard procedures; silica gel (Merck, Silica Gel 60, 40–63 μ m) was used for column chromatography. The starting compounds **2a–2f**, **3b**, and **3d** were prepared according to the reported protocol [38]. In case of **3b** and **3d** NaH was used instead of LiHMDS.

Methyl 2-(6-*chloropurine*-7-*yl*)*propanoate* (2d, $C_0H_0ClN_4O_2$)

White solid; 0.912 g (62 % overall yield from **1a**); m.p.: 67–71 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.95$ (d, J = 7.8 Hz, 3H, CH₃), 8.47 (s, 1H, CH^{Pu}), 8.78 (s, 1H,

CH^{Pu}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 18.0, 53.3, 54.9, 122.2, 142.7, 147.2, 152.3, 161.6, 169.9 ppm; HRMS (ESI): <math>m/z$ calcd for C₉H₉ClN₄NaO₂ 263.03062, found 263.03074.

6-Chloro-7-phenacylpurine (2e, C₁₃H₉ClN₄O)

Yellow solid; 0.661 g (54 % overall yield from **1a**); m.p.: 187 °C (decomp.); ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 6.25$ (s, 2H, CH₂), 7.65 (m, 2H, CH^{Ph}), 7.75 (m, 1H, CH^{Ph}), 8.10 (m, 2H, CH^{Ph}), 8.74 (s, 1H, CH^{Pu}), 8.84 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 53.3$, 122.8, 128.2, 129.2, 133.6, 134.6, 151.6, 151.8, 161.5, 193.1 ppm; HRMS (ESI): *m*/*z* calcd for C₁₃H₉ClN₄NaO 295.03571, found 295.03586.

7-Allyl-6-chloropurine-2-amine (3b, C₈H₈ClN₅)

Yellow solid; 0.170 g (58 % overall yield from **1b**); m.p.: 180 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 4.90$ (m, 3H, CH and CH₂), 5.17 (d, J = 10.5 Hz, 1H, CH), 6.05 (m, 1H, CH), 6.63 (br s, 2H, NH₂), 8.36 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 48.2$, 115.1, 117.1, 134.4, 142.5, 149.7, 160.2, 164.3 ppm; HRMS (ESI): m/z calcd for C₈H₈ClN₅Na 232.03604, found 232.03688.

Methyl 2-(2-*amino*-6-*chloropurine*-7-*yl*)*propanoate* (3d, $C_9H_{10}CIN_5O_2$)

Yellow solid; 0.172 g (72 % overall yield from **1b**); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.81$ (d, J = 7.2 Hz, 3H, CH₃), 3.69 (s, 3H, CH₃), 5.61 (q, J = 7.2 Hz, 1H, CH), 6.68 (s, 2H, NH₂), 8.50 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 17.1$, 53.0, 55.7, 107.4, 140.3, 151.3, 153.1, 153.8, 169.6 ppm.

General procedure for conversion of N^7 -substituted 6-chloropurines to N^7 -substituted hypoxanthines

A solution of starting 6-chloropurine **2** or **3** (1 mmol) in 10 cm^3 of formic acid was heated for 2 h at 75 °C. The mixture was evaporated in vacuo, 10 cm^3 of ethanol was added, and the resultant mixture was refluxed for 30 min. Evaporation under reduced pressure and column chromatography (silica gel, dichloromethane/methanol, 10:1) gave the final product.

7-Methylhypoxanthine (4a)

White solid; 0.428 g (95 %); m.p.: >270 °C (Ref. [40] 355–357 °C); ¹H NMR in accordance with the literature data [46].

7-Allylhypoxanthine (4b, C₈H₈N₄O)

White solid; 0.153 g (87 %); m.p.: 236–237 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 4.94-5.07$ (m, 3H, CH₂, CH₂), 5.18 (m, 1H, CH₂), 6.09 (m, 1H, CH), 7.96 (s, 1H, CH^{Pu}),

8.21 (s, 1H, CH^{Pu}), 12.30 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 48.2$, 114.8, 117.4, 134.2, 143.7, 144.6, 154.3, 157.1 ppm; HRMS (ESI): *m*/*z* calcd for C₈H₈N₄NaO 199.05903, found 199.05903.

7-Propargylhypoxanthine (4c, $C_8H_6N_4O$)

White solid; 0.127 g (93 %); m.p.: 236 °C (decomp.); ¹H NMR (300 MHz, DMSO-*d*₆): δ = 3.54 (t, 1H, *J* = 2.3 Hz, CH), 5.24 (d, 2H, *J* = 2.3 Hz, CH₂), 7.99 (s, 1H, CH^{Pu}), 8.30 (s, 1H, CH^{Pu}), 12.39 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 35.8, 76.7, 78.2, 114.6, 143.4, 144.9, 154.2, 157.0 ppm; HRMS (ESI): *m/z* calcd for C₈H₆N₄NaO 197.04338, found 197.04337.

$\label{eq:methyl} \begin{array}{l} \mbox{\it Methyl 2-(1,6-dihydro-6-oxopurine-7-yl)$propionate} \\ \mbox{\it (4d, $C_9H_{10}N_4O_3)$} \end{array}$

White solid; 0.418 g (90 %); m.p.: 189–191 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.78$ (d, 3H, J = 7.3 Hz, CH₃), 3.66 (s, 3H, CH₃), 5.65 (q, 1H, J = 7.3 Hz, CH), 8.00 (s, 1H, CH^{Pu}), 8.34 (s, 1H, CH^{Pu}), 12.35 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 17.7, 52.7, 54.7, 114.9, 143.1, 144. 8, 154.2, 157.3, 170.4 ppm; HRMS (ESI): <math>m/z$ calcd for C₉H₁₀N₄NaO₃ 245.06451, found 245.06456.

7-Phenacylhypoxanthine (4e, $C_{13}H_{10}N_4O_2$)

White solid; 0.119 g (94 %); m.p.: 261 °C (decomp.); ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 6.03$ (s, 2H, CH₂), 7.62 (m, 2H, ArH), 7.76 (m, 1H, ArH), 7.99 (s, 1H, CH^{Pu}), 8.07 (m, 2H, CH^{Ar}), 8.17 (s, 1H, CH^{Pu}), 12.31 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 52.9$, 115.6, 128.1, 129.1, 134.0, 134.2, 144.6, 144.7, 154.4, 156.9, 192.7 ppm; HRMS (ESI): *m/z* calcd for C₁₃H₁₀N₄NaO₂ 277.06960, found 277.06965.

7-Allylguanine (5b, C₈H₉N₅O)

Beige solid; 0.185 g (96 %); m.p.: >270 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 4.80$ (d, J = 5.4 Hz, 2H, CH₂), 5.00 (d, J = 17.1 Hz, 1H, CH), 5.14 (d, J = 10.8 Hz, 1H, CH), 6.26 (s, 2H, NH₂), 7.86 (s, 1H, CH^{Pu}), 10.89 (s, 1H, NH) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 47.9$, 107.9, 117.1, 134.4, 142.7, 153.1, 154.4, 159.7 ppm; HRMS (ESI): m/z calcd for C₈H₉N₅NaO 214.06993, found 214.07056.

Methyl 2-(2-*amino*-1,6-*dihydro*-6-*oxopurine*-7-*yl*)*propanoate* (5d, $C_9H_{11}N_5O_3$)

White solid; 0.027 g (97 %); m.p.: 261 °C (decomp.); ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 1.71$ (d, J = 7.3 Hz, 3H, CH₃), 3.63 (s, 3H, CH₃), 5.49 (q, J = 7.3 Hz, 1H, CH), 6.51 (br s, 2H, NH₂), 8.01 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 17.6$, 52.5, 54.3, 107.9, 142.1, 153.3, 154.5, 159.9, 170.6 ppm; HRMS (ESI): *m/z* calcd for C₉H₁₁N₅NaO₃ 260.07541, found 260.07633.

General procedure for conversion of N^7 -substituted 6-chloropurines to N^7 -substituted 6-mercaptopurines

NaSH (1.25 cm³, 4 M solution in water) was added to a solution of 6-chloropurine **2** or **3** (1 mmol) in 6 cm³ DMF. The resultant mixture was stirred for 80 min at ambient temperature and then 1 cm³ HCl (1 M) was added. Evaporation under reduced pressure and flash chromatography (silica gel, dichloromethane/methanol, 10:1) gave the final product.

7-Methyl-6-mercaptopurine (6a)

White solid; 0.080 g (96 %); m.p.: >270 °C (Ref. [46] 306–308 °C); NMR spectra in accordance with the literature data [47].

$\label{eq:methylow} \begin{array}{l} \mbox{Methyl 2-(6-mercaptopurine-7-yl)$propanoate} \\ \mbox{(6d, $C_9H_{10}N_4O_2S$)} \end{array}$

Yellow solid; 0.114 g (96 %); m.p.: 212–215 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 1.85 (d, 3H, *J* = 7.3 Hz, CH₃), 3.68 (s, 3H, CH₃), 6.66 (m, 1H, CH), 8.21 (d, 1H, *J* = 1.2 Hz, CH^{Pu}), 8.71 (s, 1H, CH^{Pu}), 13.79 (br s, 1H, NH) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 17.4, 52.8, 54.6, 125.2, 145.2, 146.7, 153.0, 169.9, 170.7 ppm; HRMS (ESI): *m*/*z* calcd for C₉H₁₀N₄NaO₂S 261.04167, found 261.04177.

6-Mercapto-7-phenacylpurine (6e, C₁₃H₁₀N₄OS)

White solid; 0.118 g (97 %); m.p.: 264 °C (decomp.); ¹H NMR (300 MHz, DMSO- d_6): $\delta = 6.42$ (s, 1H, CH₂), 7.62 (m, 2H, CH^{Ar}), 7.74 (m, 1H, CH^{Ar}), 8.07 (m, 2H, ArH), 8.21 (s, 1H, CH^{Pu}), 8.44 (s, 1H, CH^{Pu}), 13.77 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 53.5$, 125.6, 128.1, 129.1, 134.1, 134.1, 145.1, 149.0, 152.8, 169.9, 192.7 ppm; HRMS (ESI): m/z calcd for C₁₃H₁₀N₄NaOS 293.04675, found 293.04666.

7-Allyl-6-mercaptopurine-2-amine (7b, C₈H₉N₅S)

Yellow solid; 0.185 (89 %); m.p.: >270 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 4.94$ (dd, J = 1.2, 17.1 Hz, 1H, CH), 5.14 (dd, J = 1.2, 10.2 Hz, 1H, CH), 5.22 (d, J = 5.4 Hz, 2H, CH₂), 6.05 (m, 1H, CH), 6.49 (br s, 2H, NH₂), 8.14 (s, 1H, CH^{Pu}), 11.94 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 48.1$, 117.1, 119.3, 135.1, 148.0, 153.3, 156.9, 169.0 ppm; HRMS (ESI): m/z calcd for C₈H₁₀N₅S 208.06514, found 208.06501.

$\label{eq:methyl} \begin{array}{l} \mbox{Methyl 2-(2-amino-6-mercaptopurine-7-yl$) propanoate} \\ (\mbox{7d}, \mbox{C}_9 H_{11} N_5 O_2 S) \end{array}$

White solid; 0.220 g (87 %); m.p.: 244–246 °C; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.76$ (d, J = 7.5 Hz, 3H, CH₃), 3.64 (s, 3H, CH₃), 6.53 (br s, 2H, NH₂), 8.36 (s, 1H, CH^{Pu}), 11.99 (br s, 1H, NH) ppm; ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 18.8$, 52.9, 54.4, 119.5, 146.8, 153.3, 157.1, 168.9, 171.1 ppm; HRMS (ESI): m/z calcd for C₉H₁₁N₅NaO₂S 276.05257, found 276.05365.

General procedure for reaction of 6-chloropurines 2 and 3 with sodium azide

Dimethylsulfoxide (4 cm³) was added to a mixture of halopurine **2** or **3** (1 mmol) and 0.195 g NaN₃ (3 mmol). The resultant mixture was heated for 3 h at 60 °C, diluted with 80 cm³ ethyl acetate, and the organic layer was washed with brine (3 × 30 cm³). Then the collected water layers were extracted with ethyl acetate and the collected organic layers were dried over MgSO₄ and concentrated in vacuo. Flash chromatography (silica gel, ethyl acetate/ methanol, 20:1) gave the final product.

7-Allyl-6-azidopurine (8b, C₈H₇N₇)

White solid; 0.154 g (89 %); ¹H NMR (300 MHz, CDCl₃): $\delta = 5.19-5.30$ (m, 4H, 2 × CH₂), 6.05 (m, 1H, CH), 8.25 (1H, CH^{Pu}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 50.0$, 111.3, 120.4, 130.5, 133.3, 141.9, 144.1, 151.0 ppm.

Methyl 2-(6-*azidopurine-7-yl*)*propanoate* (**8d**, C₉H₉N₇O₂)

White solid; 0.237 g (95 %); ¹H NMR (500 MHz, DMSOd₆): $\delta = 2.00$ (d, J = 7.4 Hz, 3H, CH₃), 3.70 (s, 3H, CH₃), 5.94 (q, J = 7.4 Hz, 1H, CH), 8.76 (s, 1H, CH^{Pu}), 10.07 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO-d₆): $\delta = 17.6$, 53.5, 56.3, 111.3, 135.9, 142.7, 145.6, 151.6, 170.2 ppm.

6-Azido-7-phenacylpurine (8e, C₁₃H₉N₇O)

Yellow solid; 0.140 g (54 %); ¹H NMR (500 MHz, DMSO- d_6): $\delta = 6.39$ (s, 2H, CH₂), 7.70 (m, 2H, CH^{Ar}), 7.80 (m, 1H, CH^{Ar}), 8.17 (d, J = 7.4 Hz, 2H, CH^{Ar}), 8.65 (s, 1H, CH^{Pu}), 10.07 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 54.3$, 112.6, 127.9, 128.7, 129.7, 131.7, 134.3, 135.1, 135.7, 142.5, 146.7, 151.3 ppm.

$\textit{6-Azido-7-benzylpurine}~(\textbf{8f},\,C_{12}H_9N_7)$

White solid; 0.420 g (96 %); ¹H NMR (300 MHz, CDCl₃): $\delta = 5.80$ (s, 2H, CH₂), 7.30 (m, 3H, CH^{Ar}), 7.50 (m, 2H, CH^{Ar}), 8.87 (s, 1H, CH^{Pu}), 9.99 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 50.7$, 111.4, 128.1, 128.4, 129.0, 135.3, 136.1, 142.4, 145.5, 151.2 ppm.

7-Allyl-6-azidopurine-2-amine (9b, C₈H₈N₈)

White solid; 0.160 g (74 %); ¹H NMR (600 MHz, DMSOd₆): $\delta = 5.07$ (s, J = 5.2 Hz, 2H, CH₂), 5.16 (d, J = 16.0 Hz, 1H, CH), 5.23 (d, J = 10.2 Hz, 1H, CH), 6.15 (m, 1H, CH), 8.04 (br s, 2H, NH₂), 8.31 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (150 MHz, DMSO-d₆): $\delta = 48.9$, 104.0, 118.3, 133.0, 142.7, 142.9, 143.8, 153.5 ppm.

General procedure for preparation of 7-substituted adenines and guanines via Staudinger reaction

Triphenylphosphine (2 mmol) was added to a solution of azides **8b**, **8d–8f**, or **9b** (1 mmol) in AcOH/THF/H₂O

(2:6:1 cm³). The resultant mixture was refluxed for 24 h and concentrated in vacuo. Separation by column chromatography (silica gel, ethyl acetate/methanol, 6:4) afforded the final product.

7-Allyladenine (10b, C₈H₉N₅)

White solid; 0.160 g (85 %); m.p.: 194–196 °C; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 4.86$ (d, J = 17.3 Hz, 1H, CH), 5.07 (d, J = 4.9 Hz, 2H, CH₂), 5.17 (dd, J = 0.65, 10.5 Hz, 1H, CH), 6.05 (m, 1H, CH), 6.84 (br s, 2H, NH₂), 8.19 (s, 1H, CH^{Pu}), 8.26 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 48.5$, 111.3, 117.0, 135.4, 146.3, 151.8, 152.8, 160.4 ppm; HRMS (ESI): m/z calcd for C₈H₉N₅Na 198.07502, found 198.07561.

2-(6-Aminopurine-7-yl)propanoic acid (10d, C₈H₉N₅O₂)

White solid; 0.112 g (75 %); m.p.: 211–216 °C; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 1.55$ (d, J = 7.2 Hz, 3H, CH₃), 4.86 (q, J = 7.5 Hz, 1H, CH), 8.13 (s, 1H, CH^{Pu}), 8.22 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.2$, 59.9, 111.9, 144.5, 151.9, 152.8, 159.9, 172.7 ppm; HRMS (ESI): m/z calcd for C₈H₉N₅NaO₂ 230.06485, found 230.06561.

7-Phenacyladenine (10e, C₁₃H₁₁N₅O)

Yellow solid; 0.074 g (58 %); m.p.: 230 °C (decomp.); ¹H NMR (500 MHz, DMSO- d_6): $\delta = 6.19$ (s, 2H, CH₂), 6.82 (s, 2H, NH₂), 7.62 (m, 2H, CH^{Ar}), 7.74 (m, 1H, CH^{Ar}), 8.06 (d, J = 7.5 Hz, 2H, CH^{Ar}), 8.20 (s, 1H, CH^{Pu}), 8.21 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 52.9$, 112.1, 128.3, 128.8, 134.0, 134.2, 146.8, 151.5, 152.1, 159.7, 193.4 ppm; HRMS (ESI): m/z calcd for C₁₃H₁₁N₅NaO 276.08558, found 276.08648.

7-Benzyladenine (10f)

White solid; 0.120 g (90 %); m.p.: 231–234 °C (Ref. [48] 236–238 °C).

7-Allylpurine-2,6-diamine (11b, C₈H₁₀N₆)

White solid; 0.037 g (85 %); m.p.: 265 °C (decomp.); ¹H NMR (500 MHz, DMSO- d_6): $\delta = 4.90$ (m, 3H, CH and CH₂), 5.16 (d, J = 10.4 Hz, 1H, CH), 5.51 (br s, 2H, NH₂), 6.00 (m, 1H, CH), 6.34 (br s, 2H, NH₂), 7.90 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 48.4$, 105.9, 116.9, 135.6, 145.0, 151.9, 160.5, 163.0 ppm; HRMS (ESI): m/z calcd for C₈H₁₀N₆Na 213.08592, found 213.08630.

6-Methoxy-7-methyl-7H-purine (12, C₇H₈N₄O)

6-Chloro-7-methyl-7*H*-purine (0.20 g, 1.18 mmol) was added to a solution of 0.128 g MeONa (2.37 mmol) in 4 cm^3 of dry methanol. The resultant mixture was stirred for 3 h at ambient temperature and concentrated in vacuo. Flash chromatography (silica gel, ethyl acetate/methanol, 9:1) gave 0.19 g (91 %) of the title compound as white solid. M.p.: 179–182 °C (Ref. [49] 182–184 °C); NMR spectra in accordance with the literature data [49].

$\label{eq:2.1} \begin{array}{l} \textit{7-Benzyl-N-(triphenylphosphoranylidene)purine-6-amine} \\ \textbf{(13, C_{30}H_{24}N_5P)} \end{array}$

Triphenylphosphine (0.417 g, 1.59 mmol) was added to a solution of 0.20 g **8f** (0.80 mmol) in 6 cm³ THF. The resultant mixture was stirred for 12 h at 60 °C and concentrated in vacuo. Column chromatography (silica gel, ethyl acetate/methanol, 9:1) afforded 0.370 g (95 %) of title compound as white solid. ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 5.89$ (s, 2H, CH₂), 7.16 (m, 5H, CH^{Ar}), 7.36–7.46 (m, 9H, CH^{Ar}), 7.67 (m, 6H, CH^{Ar}), 7.87 (s, 1H, CH^{Pu}), 8.21 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 50.0$, 117.8, 118.1, 126.7, 127.4, 127.8, 128.2, 128.3, 128.4, 129.2, 131.80, 131.84, 132.7, 132.9, 137.6, 143.3, 152.6, 156.6, 156.7, 159.1 ppm.

7-Methyl-6-(morpholin-4-yl)purine (14, C₁₀H₁₃N₅O)

Dry acetonitrile (6 cm³) was added to a mixture of 0.150 g 6-chloro-7-methyl-7*H*-purine (0.89 mmol) and 0.30 cm³ morpholine (3.55 mmol). The resultant mixture was stirred for 3 h at 60 °C and concentrated in vacuo. Flash chromatography (silica gel, ethyl acetate/methanol, 9:1) gave 0.184 g (94 %) of the title compound as white solid. M.p.: 173–174 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 3.40$ (m, 4H, CH₂), 3.78 (m, 4H, CH₂), 3.99 (s, 3H, CH₃), 8.42 (s, 1H, CH^{Pu}), 8.49 (s, 1H, CH^{Pu}) ppm; ¹³C NMR (125 Hz, DMSO-*d*₆): $\delta = 34.0$, 50.3, 65.8, 115.9, 148.2, 151.1, 154.7, 161.1 ppm; HRMS (ESI): *m/z* calcd for C₁₀H₁₃N₅NaO 242.10123, found 242.10194.

Acknowledgments We are grateful for financial support from specific university research (MSMT No. 21/2012) and the Grant Agency of the Czech Republic (Grant No. 203/09/1552).

References

- 1. Rosemeyer H (2004) Chem Biodivers 361
- 2. Parker WB (2009) Chem Rev 109:2880
- 3. Amblard F, Cho JH, Schinazi RF (2009) Chem Rev 109:4207
- Mieczkowski A, Roy V, Agrofoglio LA (2010) Chem Rev 110:1828
- 5. Lebreton J, Escudier J-M, Arzel L, Len C (2010) Chem Rev 110:3371
- 6. Romeo G, Chiacchio U, Corsaro A, Merino P (2010) Chem Rev 110:3337
- 7. Jacobson KA, Jarvis MF, Williams M (2002) J Med Chem 45:4057
- 8. Clercq ED (2010) J Med Chem 53:1438
- 9. Baraldi PG, Preti D, Borea PA, Varani K (2012) J Med Chem 55:5676
- Koszytkowska-Stawińska M, Kolaczkowska W, Adamkiewicz W, De Clercq E (2007) Tetrahedron 63:10587
- Havlíček L, Hanuš J, Veselý J, Leclerc S, Meijer L, Shaw G, Strnad M (1997) J Med Chem 40:408
- Long MC, Shaddix SC, Moukha-Chafiq O, Maddry JA, Nagy L, Parker WB (2008) Biochem Pharmacol 75:1588
- Gómez JA, Campos J, Marchal JA, Trujillo MA, Melguizo C, Prados J, Gallo MA, Aránega A, Espinosa A (1997) Tetrahedron 53:7319

- Koszytkowska-Stawińska M, Kaleta K, Sas W, De Clercq E (2007) Nucleosides Nucleotides Nucleic Acids 26:51
- Hakimelahi GH, Ly TW, Moosavi-Movahedi AA, Jain ML, Zakerinia M, Davari H, Mei H-C, Sambaiah T, Moshfegh AA, Hakimelahi S (2001) J Med Chem 44:3710
- Núñez CM, Pavani MG, Díaz-Gavilán M, Rodríguez-Serrano F, Gómez-Vidal JA, Marchal JA, Aránega A, Gallo MA, Espinosa A, Campos JM (2006) Tetrahedron 62:11724
- Lambertucci C, Antonini I, Buccioni M, Ben DD, Kachare DD, Volpini R, Klotz K-N, Cristalli G (2009) Bioorg Med Chem 17:2812
- Peifer C, Bühler S, Hauser D, Kinkel K, Totzke F, Schächtele C, Laufer S (2009) Eur J Med Chem 44:1788
- Laufer SA, Domeyer DM, Scior TRF, Albrecht W, Hauser DRJ (2005) J Med Chem 48:710
- Vik A, Proszenyák Á, Vermeersch M, Cos P, Maes L, Gundersen L-L (2009) Molecules 14:279
- Conejo-García A, Núñez MC, Marchal JA, Rodríguez-Serrano F, Aránega A, Gallo MA, Espinosa A, Campos JM (2008) Eur J Med Chem 43:1742
- Díaz-Gavilán M, Gómez-Vidal JA, Rodríguez-Serrano F, Marchal JA, Caba O, Aránega A, Gallo MA, Espinosa A, Campos JM (2008) Bioorg Med Chem Lett 18:1457
- Okamura T, Kikuchi T, Fukushi K, Arano Y, Irie T (2007) Bioorg Med Chem 15:3127
- 24. Devanesan P, Todorovic R, Rogan E, Cavalieri E (1994) Polycycl Aromat Compd 6:111
- Chen L, Devanesan PD, Higginbotham S, Ariese F, Jankowiak R, Small GJ, Rogan EG, Cavalieri EL (1996) Chem Res Toxicol 9:897
- 26. Novák J, Linhart I, Dvořáková H (2004) Eur J Org Chem 2738
- Novák J, Linhart I, Dvořáková H, Kubelka V (2003) Org Lett 5:637
- 28. Montgomery JA, Hewson K (1961) J Org Chem 26:4469

- 29. Jones JW, Robins RK (1962) J Am Chem Soc 84:1914
- 30. Montgomery JA, Thomas HJ (1963) J Org Chem 28:2304
- Montgomery JA, Hewson K, Clayton SJ, Thomas HJ (1966) J Org Chem 31:2202
- 32. Nagasawa N, Kumashiro I, Takenishi T (1966) J Org Chem 31:2685
- 33. Jones AS, Lewis P, Withers SF (1973) Tetrahedron 29:2293
- 34. Leonard NJ, Fujii T, Saito T (1986) Chem Pharm Bull 34:2037
- Fujii T, Saito T, Inoue I, Kumazawa Y, Leonard NJ (1986) Chem Pharm Bull 34:1821
- Hocková D, Buděšínský M, Marek R, Marek J, Holý A (1999) Eur J Org Chem 2675
- Kotek V, Chudíková N, Tobrman T, Dvořák D (2010) Org Lett 12:5724
- 38. Kotek V, Tobrman T, Dvořák D (2012) Synthesis 610
- Harnden MR, Wyatt PG, Boyd MR, Sutton D (1990) J Med Chem 33:187
- 40. Prasad RN, Robins RK (1957) J Am Chem Soc 79:6401
- Temple C Jr, Thorpe MC, Coburn WC Jr, Montgomery JA (1966) J Org Chem 31:935
- 42. Temple C Jr, Kussner CL, Montgomery JA (1966) J Org Chem 31:2210
- Masternak A, Skalski B, Milecki J (2007) J Label Compd Radiopharm 50:43
- Bräse S, Gil C, Knepper K, Zimmermann V (2005) Angew Chem Int Ed 44:5188
- 45. Scriven EFV, Turnbull K (1988) Chem Rev 88:297
- Chenon MT, Pugmire RJ, Grant DM, Panzica RP, Townsend LB (1975) J Am Chem Soc 97:4627
- Kochergin PM, Aleksandrova EV, Korsunskii VS (2000) Chem Heterocycl Comp 36:311
- 48. Leonard NJ, Fujii T (1963) J Am Chem Soc 85:3719
- 49. Barlin GB, Fenn MD (1983) Aust J Chem 36:633