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Abstract: An efficient monooxidation of nitrediols was performed by dimethyldioxirane, exploiting 
tile inhibiting effect of the nitro group on reaction at adjacent centers. The reaction appears of general 
value when an alcoholic moiety is in o~ or 15 to the nitro group. 
A double bond was similarly deactivated towards epoxidation, and other functional groups reacted 
preferentially, Copyright © 1996 Published by Elsevier Science Ltd 

In the last few years dimethyldioxirane (DMD) has become an important reagent for its high efficiency and 

selectivity in a variety of  oxidation reactions) It has shown to be extremely sensitive to stereoelectronic 

effects and a dipole group close to the reactive center may influence the reaction, favouring a chemo and 

stereospecific attack 2 or preventing, in other cases, the oxidation. 3 

In 1,2 and 1,3 diol systems we noted a strong inhibiting effect of  the formed carbonyl group on the oxidation 

of  the second function, allowing us to selectively oxidize these compounds to keto-alcohols. 4 

In the light of  these observations we considered it useful to investigate the reactivity of  DMD on 

polyfunctionalized substrates with strong dipole groups lying close to reactive centers. Polyfunctionalized 

nitroalkanes s and conjugated nitroalkenes 6 are of  particular interest in complex organic synthesis because of  

the many possible transformations of  the nitro functionality. 

For oxidation by DMD, Murray and coworkers proposed a mechanism in which an electrophilic attack of  the 

reagent generates a small positive charge on the carbon atom. 7 Then we may assume that a dipole close to the 

reactive center such as the nitro group, destabilizes the transition state inhibiting the attack of  the reagent. 
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Table 1. Selective oxidation of nitrocompounds by DMD 

Entry Substrate Product 

OH OH OH O 

1 2 

yield% 
(isolated) 

90' (55 ¢ ) 

>96' (85 c) 

OH O 

3 4 
OH OH 

~ low conversion 
NO~ o n  NO~ O 

5 6 
No2 No2 

4 ~ ~ , . ~ , , , ~  OH ~ ' ~ C O O H  80' 
OH OH 

7 8 
NO2 NO2 

5 / ~ ~ . . ~ . . j ~ . ~ O H  ~ . . / ~ , . . / ~ C O O H  >9C" d 
OH OH 

9 10 

6 ~ O 1  ~ O z  >96b 

11 12 

OH O 

7 ~ ~ 90b (75 ~ ) 
NO2 NO2 

13 14 

a) GC yield b) yield by NMR analysis c) yield of isolated products d) clmracterized as methyl ester 

Taking advantage of this property, we were able to perform the selective oxidation of nitrodiois to nitroketols, 

meanwhile other reagents fail to discriminate between the two hydroxyl groups) 
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The behavior of 1, 3 and $ (Table 1 entries 1,2,3) showed that the deactivating effect of the nitro group is 

extended to et and 13 positions. 

The most interesting transformation apears the oxidation of a primary hydroxyl group in the presence of a 

secondary alcohol close to a nitro group. Thus, 7 and 9 were oxidized to the corresponding carboxylic acids 

with a selectivity hitherto never observed. 

The deactivating effect was emphasized on the olefin mojety. We found it possible to selectively oxidize a 

double bond in a diene which carries a nitro group. Thus, 11 was converted to 12 in exceptionally high yield. 

Moreover the nitroolefin moiety was shown to be much less reactive than a hydroxyl one; i.e. 13 was oxidized 

to 14. Only with an excess of reagent and prolonged reaction times was some of epoxiderivative produced. 

Usually an olefin is much more reactive then an alcohol. In this case there is a clear inversion of selectivity in 

agreement with the withdrawing effect of the nitro group which makes the double bond electron-deficient. 

All reactions were performed, in a typical procedure, by adding rapidly 1.5 equivalents of DMD solution 9 

(0.09M in acetone) to a stirred solution of substrate (100 rag) in acetone (1 ml) at room temperature (ca. 

25°C). If necessary, further amount of reagent was added until complete conversion of the substrate. 11 was 

reacted at -20°C for 2 hr. All other substrates were stirred overnight at room temperature. Reactions were 

monitored by TLC and GC, and products characterized by ~H-NMR and ~3C-NMR spectroscopy. 1° When 

necessary, the reaction products were purified by flash chromatography eluting with a mixture of petroleum 

ether and ethyl acetate, but sometimes yields decreased owing to partial decomposition of nitroalcohols on 

silica gel. All starting materials were prepared by methods reported in the literature as mixtures of 

diastereoisomers, H but no difference in reactivity for each steroisomer was observed. 

The reactions reported here, together with the previous observations, lead us to consider of general value the 

influence of a dipole group on DMD behavior and encourage us to further investigate the synthetic potential 

of this method. 
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