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Summary: Reaction of Pt(CH,=CH.)(PPhs), and o-bis-
(dimethylsilyl)carborane provides the cyclic bis(silyl)-
platinum complex 2. The complex 2 reacts with a variety
of substrates such as an alkyne, dione, and nitrile,
generating a new class of heterocyclic compounds incor-
porating an alkene, ketonate, imine, and amine.

The double silylation of unsaturated organic com-
pounds catalyzed by group 10 metals! is a convenient
synthetic route to obtain disilacyclic compounds. Plati-
num complexes, in particular, provide excellent cata-
lysts for the transformation of disilanes. Cyclic bis(silyl)-
platinum complexes, which Eaborn et al.? and Tanaka
et al.® had already reported, have been implicated as
key intermediates in the platinum-catalyzed double
silylation of alkynes. However, the complexes have not
been structurally characterized. Here we report the
general synthesis of a new class of thermally stable
cyclic bis(silyl)platinum complexes with a bulky o-
carborane unit and some unusual reaction chemistry
with unsaturated organic compounds.

The reaction of Pt(CH;=CH,)(PPhs), (0.05 mmol) and
o-bis(silyl)carborane 1 (1.4 equiv) in benzene leads to 2
in good yield (eq 1). The compound 2 is a yellow solid
stable to air and to brief heating to 120—130 °C.
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The 1H, 13C, 3P, and 2°Si NMR data for 2 support
the proposed structure. In particular, the 2°Si NMR
chemical shift of 37.17 ppm as a doublet of doublets
(JPtfsi = 1281.6 Hz, JSi*P(trans) = 148.82 Hz, JSifP(cis) =
12.80 Hz) is close to the literature values for cis-PtSi,P;
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complexes.* The structure of 2 was established by a
single-crystal X-ray analysis.5

Compound 2 was found to be a good precursor for the
double-silylation reaction.5-8 Thus, thermolysis of a
toluene solution of 2 (0.153 mmol) and 1-hexyne (1.23
mmol) at 120 °C for 6 h afforded a 54% yield of 3 as a
colorless oil. A key feature in the 1H NMR spectrum of
3 is asinglet at 6.24 ppm assigned to the vinyl proton.
A characteristic low-frequency *C NMR resonance at
0 138.50 provides evidence for a tethered carbon atom
of the two silicon moieties® (Scheme 1).

Treatment of 2 with 3 equiv of 3-phenyl-2-propenal
in refluxing toluene-dg while the reaction progress was
monitored by 'H NMR spectroscopy resulted in the dis-
appearance of the aldehyde hydrogen peak and the for-
mation of a new methine peak (6 1.56).1° The IR spec-
trum of 4 shows a new absorption due to a vc—o stretch
at 1448 cm~1. The mass spectrum of the product showed
a molecular ion at m/z 538. To our surprise, an X-ray
study of 4 showed it to be the insertion product of two
carbonyl ligands into the C—Si bond in 2 (Figure 1).11
The reaction has the potential for developing a new
method for double C—C bond formation between the car-
boranyl unit and carbonyl compounds. Such an insertion
of the carbonyl functionality into the o-carborane has
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Figure 1. Crystal structure of 4. Selected bond distances
(A): Si1—01, 1.648(6); Si1—02, 1.625(4); 01—C9, 1.421-
(10); C1-C9, 1.58(1); C1-C1*, 1.71(2).

been observed in Yamamoto's work on the chemoselec-
tive addition of o-carborane to the aldehyde groups by
a palladium-catalyzed'? or a fluoride-promoted reac-
tion.13
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Figure 2. Crystal structure of 5. Selected bond distances
(A) and angles (deg): Si1'~N2, 1.749(2); Si2’'—N2, 1.750-
(2); Si1'—C1', 1.896(2); Si2'—C2’', 1.899(3); N2—C20, 1.422-
(3); N1—C20, 1.393(3); N1—C13, 1.419(3); Si2—N1, 1.764(2);
Si1—C13, 1.850(3); C13—C18, 1.363(4); C18—C19, 1.398-
(4); C19—C20, 1.370(3); Si1'-N2—-Si2', 120.5(1); N2—C20—
N1, 122.9(2); C20—N1—C13, 107.5(2); Si2—N1—C13, 118.1-
(2); N1—-C13-Si1, 129.1(2).

The reaction between 2 and 4 equiv of fumaronitrile
in refluxing toluene for 8 h produced 5 as colorless
crystals.* Three singlets (0 12.53, 4.36, —6.51) in the
29Si NMR spectrum and four singlets (6 2.20, 0.93, 0.40,
—0.047) in the 13C NMR spectrum of 5 assigned to the
methyl groups on the silicon atom demonstrate that the
four dimethyl groups are not equivalent. The IR spec-
trum of 5 failed to show a new signal for a terminal CN.
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The ambiguous spectroscopic data led us to carry out a
single-crystal X-ray diffraction study in order to eluci-
date the structure for 5 (Figure 2).15 To our surprise,
an X-ray study revealed 5 to be a cyclization product
with two types of disilyl moieties such as the imine and
N,N-bis(silyl)amine, which are connected by a five-
membered ring. The five-membered ring (C4N) is nearly
planar, with the largest deviation of the ring atoms from
the mean plane at N(1) (0.03 A). The C—C bond lengths
(1.363—1.398 A) and C—N bond lengths (1.393—1.422
A) in the ring fall between a single and double bond,®
demonstrating the delocalized ring system. Such a
transformation of nitriles to imines or N,N-bis(silyl)-
enamines has been observed during the photochemical
reaction!’ or catalysis by a platinum complex.8

A reasonable mechanism for the formation of 5
involves the initial insertion of the cyano group into one
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of the platinum—silicon bonds, leading to intermediate
6, followed by the cyclization to the imine 7. It lends
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some credence to the notion that nucleophilic attack of
the imine is at the platinum carbene intermediate 8
formed from the migration of the silicon atom to the
nitrogen atom that leads to compound 5.18

In summary, the organometallic cyclic bis(silyl)-
platinum complex reacts with a variety of substrates
such as an alkyne, enone, and nitrile, generating a new
class of heterocyclic compounds incorporating an alkene,
ketonate, imine, and amine. In contrast to similar
PtSi,P, compounds, 2 is relatively robust and not as
readily attacked by unsaturated organic substrates.
Studies are in progress to clarify the mechanistic details
of compounds 4 and 5.
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