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Abstract—We have recently identified BMS-345541 (1) as a highly selective and potent inhibitor of IKK-2 (IC50 = 0.30 lM), which
however was considerably less potent against IKK-1 (IC50 = 4.0 lM). In order to further explore the SAR around the imidazoqui-
noxaline tricyclic structure of 1, we prepared a series of tetracyclic analogues (7, 13, and 18). The synthesis and biological activities
of these potent IKK inhibitors are described.
� 2006 Elsevier Ltd. All rights reserved.
The nuclear transcription factor NF-jB plays a key role
in regulating the expression of many pro-inflammatory
genes. Examples of genes modulated by NF-jB include
the cytokines tumor necrosis factor (TNF-a), interleu-
kins IL-1, IL-6, IL-8, intercellular adhesion molecule
(ICAM-1), and vascular cellular adhesion molecule
(VCAM-1).1 NF-jB is normally retained in the cyto-
plasm as an inactive form associated with the IjB inhib-
itory proteins. However, upon cellular stimulation IjB
is phosphorylated by the IjB kinase (IKK) for which
IKKa (IKK-1) and IKKb (IKK-2) are the two most
common isoforms,2 and subsequently phosphorylated
IjB is ubiquitinated and degraded. NF-jB is then
released from the IjB/NF-jB complex into the cell,
where it translocates to the nucleus and activates a num-
ber of genes.3 IKK-2 has been shown to be required for
the pro-inflammatory cytokine-induced activation of
NF-jB in inflammatory cells through the so-called ‘clas-
sical’ NF-jB activation pathway (i.e., degradation of
IjB-alpha), whereas IKK-1 appears to be involved in
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the ‘alternative’ NF-jB activation pathway, related to
the development and organization of secondary lym-
phoid organs and B-cell maturation.4 This suggests that
inhibitors of IKK could in principle be used in the treat-
ment of inflammatory and related disorders.5

We have recently identified BMS-345541, 4-(2 0-aminoeth-
yl)amino-1,8-dimethylimidazo[1,2-a]quinoxaline (1, Fig. 1)
as a highly selective and potent inhibitor of IKK-2
(IC50 = 0.3 lM), but which showed considerably less
potency against IKK-1 (IC50 = 4.0 lM).6 BMS-345541
has also been reported to show dose-dependent efficacy
in terms of reducing disease severity in a murine model
of dextran sulfate sodium-induced colitis7 and in a model
of collagen-induced arthritis.8 Our objective was to pre-
Figure 1. BMS-345541.
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Scheme 2. Synthesis of the benzopyrazoloquinazoline series. Reagents

and conditions: (a) concd HCl, H2O, NaNO2, 0 �C, KI, rt, 0.1 h then

95 �C, 1 h; (b) concd H2SO4, MeOH, reflux, 13 h, 69% over two steps; (c)

4-methyl-1-(4-toluenesulfonyl)-5-trimethylstannylpyrazole, Pd2(dba)3,

Ph3As, CuI, DMF, 90 �C, 12 h, 55%; (d) 1 N NaOH, THF, MeOH,

80 �C, 4.2 h, 40%; (e) (PhO)2PON3, Et3N, benzene, 50 �C, 2 h, then

1,2-dichlorobenzene, 150 �C, 4 h, 67%; (f) POCl3, PhNEt2, reflux, 46 h,

77%; (g) RNH2, THF, 60–75 �C, 2–5 h, 98%.
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pare tetracyclic analogues related to compound 1 and we
report herein the synthesis and biological activities of
4-amino-substituted benzimidazoquinoxaline, benzopy-
razoloquinazoline, and benzimidazoquinoline inhibitors
of IjB kinase.9

Based on a reported procedure,10 the synthesis of the ben-
zimidazoquinaxoline series is described in Scheme 1.
Commercially available diaminonaphthalene 2 was
reacted with diethyl oxalate to give annulated quinoxal-
inedione 3, which under treatment with phosphorus oxy-
chloride afforded dichloride 4. Compound 4 was then
reacted with propargylamine to give amino-chloro deriv-
ative 5, which was cyclized under acidic conditions
to provide 1-methyl-4-chlorobenzimidazoquinaxoline 6.
Compound 6 then served as a key intermediate to gener-
ate 4-amino-substituted analogues 7a–d.11

The benzopyrazoloquinazoline series 13a–b was pre-
pared as shown in Scheme 2. 3-Amino-2-naphthoic acid
(8) was converted to 3-iodo-2-naphthoic acid via diazo-
tization followed by treatment with potassium iodide.
Esterification of the resulting acid then gave the ester 9
which was cross-coupled with 4-methyl-1-(4-toluene-
sulfonyl)-5-trimethylstannylpyrazole12 under Stille-type
conditions to afford the coupled product 10. Upon
hydrolysis, the resulting pyrazole acid intermediate
was heated with diphenylphosphoryl azide, producing
an intermediate isocyanate which spontaneously cyc-
lized under the reaction conditions to give compound
11. Exposure of compound 11 to phosphorus oxychlo-
ride then gave the chloride intermediate 12, which was
finally reacted with primary amines to provide benzopy-
razoloquinazoline analogues 13a–b.

The preparation of the benzimidazoquinolines is out-
lined in Scheme 3. Previously prepared methyl 3-iodo-
2-naphthoate (9) was converted to the corresponding
boronate derivative using bis(pinacolato)diboron and
palladium catalysis. This boronate intermediate was
subsequently cross-coupled with 5-bromo-1-methyl-
Scheme 1. Synthesis of the benzimidazoquinoxaline series. Reagents

and conditions: (a) diethyl oxalate, reflux, 14 h, 82%; (b) POCl3, reflux,

5 h, 85%; (c) propargylamine, Et3N, 1,4-dioxane, reflux, 4.5 h, 73%; (d)

concd H2SO4, 80 �C, 1 h, 30%; (e) RNH2, THF, 80 �C, 18 h, 26–94%.

Scheme 3. Synthesis of the benzimidazoquinoline series. Reagents and

conditions: (a) bis(pinacolato)diboron, PdCl2(dppf), KOAc, DMSO,

85 �C, 18 h, 58%; (b) 5-bromo-1-methyl-1H-imidazole, Pd(PPh3)4,

Na2CO3, toluene, EtOH, H2O, reflux, 20 h, 72%; (c) 1 N NaOH, THF,

MeOH, rt, 20 h, 74%; (d) (PhO)2PON3, Et3N, t-BuOH, 80 �C, 30 min,

51%; (e) TFA, CH2Cl2, rt, 18 h, 70%; (f) CDI, 1,2-dichlorobenzene,

180 �C, 5 h, 42%; (g) POCl3, PhNEt2, reflux, 4 h, 90%; (h) RNH2,

THF, 60–80 �C, 18 h, 5%.
1H-imidazole under Suzuki conditions, and the resulting
ester was hydrolyzed to give the acid 14. A Curtius reac-
tion was carried out by reacting the acid 14 with diphe-
nylphosphoryl azide in tert-butanol, and this was
followed by acid treatment to afford amine 15. Heating
15 in 1,2-dichlorobenzene with carbonyldiimidazole
provided cyclized product 16, which was subsequently
treated with phosphorus oxychloride to give chloride
17. This intermediate was subsequently reacted with pri-
mary amines to give benzimidazoquinolines 18a-b.
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The analogues described above (7, 13, and 18) were eval-
uated in a primary screen assay measuring the (IKK-2
and IKK-1) enzyme-catalyzed phosphorylation of
GST-IjBa as substrate.13 The secondary assay mea-
sured the inhibition of lipopolysaccharide(LPS)-induced
TNF-a secretion in THP-1 cells.14 The IC50 values for
all tetracyclic analogues are compared with that of
BMS-345541 in Table 1. All tetracyclic analogues tested
showed more potent activity than the tricyclic com-
pound 1, against both IKK-2 and IKK-1.15 The first ser-
ies of tetracyclic analogues (7), which are related to
BMS-345541 by the addition of a fused benzene ring,
resulted in an order of magnitude increase in potency
in the IKK-2 and THP-1 cell assays. Compound 7a
showed good IKK-2 potency, with a 13-fold selectivity
versus IKK-1, comparable to the ratio seen with BMS-
345541. Benzimidazoquinoxalines bearing a solubilizing
sidechain (i.e., 7b–d) showed no particular advantage in
IKK-2 activity over the 4-NHMe analogue 7a, however,
the hydroxyethylamine analogue 7c gave an improved
48-fold selectivity for IKK-2 versus IKK-1. When the
Table 1. IKK-2, IKK-1, and THP-1 cell inhibitory potencies of tetracyclic a

Compound R IKK-2 IC50, lM

1 0.30

7a –Me 0.018

7b –CH2CH2NHMeÆHCl 0.023

7c –CH2CH2OH 0.018

7d CH2CH2N 0.046

13a –Me 0.011

13b –CH2CH2NHMe 0.035

18a –Me ndb

18b –CH2CH2NH2 0.058

a Single experiment.
b Not determined.
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Figure 2. The effect of BMS-345541 and compound 7a on serum TNF-a co
imidazoquinoxaline core was modified to a pyrazoloqui-
nazoline (13) or imidazoquinoline (18) scaffold, the
IKK-2 in vitro activities in general remained compara-
ble to the tetracyclic structures 7, although a significant
loss in cellular potency was observed for compounds 13a
and 18b.16

Since the tetracyclic compounds 7a and 7b were more
potent IKK-2 inhibitors than the corresponding tricyclic
analogue BMS-345541, we examined their in vivo bio-
logical activities in mice. As shown in Figures 2 and 3,
we measured the effect of compounds 7a and 7b on ser-
um TNF-a concentrations induced by intraperitoneal
injection of LPS-treated mice.17 As shown in Figure 2,
compound 7a produced the same effect at 10 mg/kg as
did BMS-345541 at 30 mg/kg, which corresponds to
approximately a 50% reduction of TNF-a levels versus
vehicle control animals. Figure 3 shows that a dose of
100 mg/kg resulted in a nearly complete inhibition of
serum TNF-a for BMS-345541 and 7b, with a good
dose-proportional response being observed.
nalogues 7, 13, and 18
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Figure 3. The effect of BMS-345541 and compound 7b on serum TNF-a concentrations induced by intraperitoneal injection of LPS.
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In summary, a series of tetracyclic structures, based on
BMS-345541 as a structural lead, were efficiently synthe-
sized and subsequently evaluated as IKK-2 inhibitors
in vitro and in vivo. Most of the tetracyclic compounds
were more potent than the parent in vitro and two new
benzimidazoquinoxalines showed improved overall
activity when compared to BMS-345541. Future studies
will be directed toward further optimization of these tet-
racyclic scaffolds.
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