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Table I. Energy Gaps between the Singlet and Triplet States in 
Isomeric Dinitroxides 6 

6 AEq-T/cm-'" B/K GS from VB G S  from MO 
P 9 '  10.6 -2.0 S = l  nondisjointed 
m,p -3.4 -2.0 s -0  disjointed 
m,m' -1.8 -2.1 S=l doubly disjointed 

= 2J. +/- signs 
represent triplet/singlet ground states, respectively. 

with a Weiss field and purity factor F4 (eq 1) and refined by a 
SALS programS to give the results summarized in Table I. 

"The energy gap between the two states: 

The measurement of the absolute peff values and their temperature 
dependence over wide temperature ranges makes it possible to 
conclude that, whereas both dipole4ipole and exchange couplings 
between the two nitroxide radicals in 6 are rather weak, the p,p' 
isomer has a triplet and the m,p' and m,m'isomers have singlet 
ground states, The exchange coupling in 2 (X = p-N(t-Bu)O.) 
may not be very strong but should be ferromagnetic. The ground 
states of 4 and 5 are suggested to be singlet. The coupling between 
the radical molecules in neat solid samples is always weakly 
antiferromagnetic, as revealed by the small negative 0 values. 

p,p'-6 is nondisjointed and is predicted by molecular orbital 
theory (MO)Zc,d to have a triplet ground state and the largest 
magnitude of the disjointed m,pf-6 is predicted to have 
a singlet ground state and a small magnitude of The m,m' 
isomer is classified as a "doubly disjointed" system in the sense 
that the carbons with substantial positive density are separated 
by three carbons, and therefore the isomer is predicted to have 
a singlet ground state with the smallest magnitude gap of all. The 
results in Table I are in line with these predictions. However, 
formal application of a topology/valence bond theory (VB)6 would 
have predicted a ferromagnetic interaction between the m,m'spins 
(S = (n* - n)/2 = (9 - 7)/2 = l).' 

are annoying, as 
semiempirical calculations on sterically unprotected diradicals 1 
(X = NHO., N:) usually give on the order of 1 kcal/mol.8 
MM2 calculations give an estimate of the propellar-type torsion 
of the phenyl rings out of the vinylidene and dimethylvinylidene 
planes as 40° and 54O, respectively. It has been shown that, in 
phenyl nitroxides, the electron spins are much more localized in 
the nitroxide moieties than in the hydrocarbon  radical^.^ These 
two factors appear to attenuate the topological effect of the radical 
centers on the mode of the exchange coupling. Studies that would 
amplify the trend found in this study are necessary on a series 
of sterically unbiased systems with larger spin polarization on the 
phenyl rings.3 Such studies are in progress.1° 
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The sialyl Lewis X @Lex) determinant (NeuAc-a-2,3-Gal-8- 
1,4-[Fuc-a- 1,3]-GlcNAc), compound 1, is a ligand for E-selectin 
(endothelial leucocyte adhesion molecule 1, or ELAM-I), a 
member of the selectin family of cell adhesion  molecule^.^-^ 
Interactions between E-selectin and leucocyte-bound SLe" or 
closely related oligosaccharides are thought to be important early 
events in the inflammation process.839 Binding analysis has shown 
that the sialic acid (NeuAc) and the fucose (Fuc) moieties are 
essential for high affinity. The related desialylated trisaccharide 
Le" (Gal-8-1,4-[Fuc-a-l,3]-GlcNAc), for example, is not a 
high-affinity ligand for E-selectin.&' In this communication, we 
describe the syntheses of SLe" 1 and the 8-O-allyl glycoside of 
Le" 2 using a cloned fucosyltransferase and their complete N M R  
spectral assignments including ROESY and NOESY experiments 
in order to investigae the conformation of these compounds in 
solution. 

The synthesis of 8-0-allyl Lex, compound 2, starts with the 
construction of the 8-0-allyl-N-acetyllactosamine derivative 5 
(Scheme 1).lo The glycosyl acceptor, 8-0(2,3,4,6-tetra-O- 
acetyl-a-bgalactopyranosyl) trichloroacetimidate 311 was treated 
with the 8-0-allyl glycoside of a selectively protected GlcNAc 
derivative (compound 4) using boron trifluoride etherate (BF3. 
OEt,) as a catalyst to give, after deprotection, compound 5.12J3 

~ ~ ~~~ ~~~ 
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Conformation I (compound I )  Conformation II (compound 2) 

Figure 1. Results of the ROESY spectrum of SLeX 1 (left) and ROESY and NOESY spectra of fl-O-allyl LeX 2 (right). Certain protons relevant 
to the N O E  analysis are  labeled in the structures. The major conformation for the 6-0-allyl glycoside of Le' (conformation 11) is also present in SLe". 
(The spectra are available in the supplementary material.) The N O S Y  spectrum was recorded at  27 "C with a mixing time of 720 ms, and the ROESY 
spectra was recorded a t  26 O C  with a mixing time of 200 ms. 
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The fucose was introduced by an enzymatic glycosylation reaction 
using guanosine diphosphate (GDP) fucose and a recently cloned 
fucosyltransferase to give the target compound 2.14 The fuco- 
sylation reaction proceeded in greater than 95% yield and worked 
with a free hydroxyl a t  either the reducing carbon of the di- 
saccharide or the 8-0-allyl glycoside (Le., compound 5). 

Scheme I1 describes the construction of SLe" l . 1 5  The tri- 
saccharide 6 was treated with GDP-fucose using the fucosyl- 
transferase to give SLe" 1 in greater than 95% yield. Compound 
6 is commercially available or can be synthesized from lactosamine 
or its glycosides by using an a-2,3-sialyltransferase and CMP- 
N ~ U A C . ' ~ ~ ' ~  

Proton ( 'H) and carbon-13 (13C) assignments were made for 
compounds 1 and 2 using a combination of DQF-COSY, TOCSY, 
homonuclear J-resolved, and HMQC, HMBC, and DEPT-135 
techniques.'* Compounds 1 and 2 were then analyzed using 
ROESY and NOESY N M R  experiments in an attempt to study 
their solution conformations. Figure 1 shows the results of the 
ROESY experiments on SLex and the ROESY and NOESY 
experiments on Le". We detected significant NOEs in both the 
8-anomer of SLex and the 8-0-allyl glycoside of LeX between 
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protons H-5 and H-6 of fucose with the H-2 proton of gala~tose. '~ 
These NOEs suggest a folded conformation for both compounds 
in which the fucose moiety is tucked underneath the galactose 
(Figure 1, conformations I and 11). NOEs between Fuc H-1 and 
GlcNAc H-3 and between Gal H-1 and GlcNAc H-4 seem to 
support these solution conformations. An additional N O E  was 
also observed between Fuc H-1 and GlcNAc H-2 in the j3-0-allyl 
glycoside of Lex, suggesting some flexibility around the Fuc- 
(1-+3)-GlcNAc linkage.20v21 Semiempirical quantum mechanical 
calculations and N M R  analysis of Lex containing oligosaccharides 
have shown that I1 is the major conformation of this trisaccharide, 
which agrees with our N M R  data.22 Preliminary calculations 
on SLe" performed using Biosym's consistent valence force field 
(CVFF) also indicate that conformation I is a minimum energy 
structure.23 Therefore the major conformation for the 8-O-allyl 
glycoside of L& is also present in the Ld portion of S W ,  and 
we believe that this is most likely the active conformation that 
is involved in binding to E-selectin. The only significant NOE 
that was clearly resolved involving the sialic acid group of the 
8-anomer of SLe" and the other sugars was detected between 
NeuAc H-3a and Gal H-3. N o  unusual conformations were 
suggested for the sialic acid moiety when compared to literature 
studies on other sialic acid containing  oligosaccharide^.^^^^^ 

~~ ~~ 
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We are continuing our studies on the synthesis and structural 
analysis of E-selectin related oligosaccharides and will report on 
our results in due course. 
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[(CO)9C03(~3-CC02)]6, M = Zn, CO,'-~ is defined by the tetra- 
hedral MI1, core (Scheme la). In order to explore the conse- 
quences of a square planar geometry (Scheme Ib), we have now 
investigated metal-metal quadruply bonded compoundse6 as cores 
for coordinating organometallic cluster carboxylate ligands.' 
Although some related chemistry is kn0wn,~3* hybrid compounds 
having both quadruply bonded and trimetal alkylidyne subunits 
are not. Another development is the assembly of metal-metal 
multiple bond compounds into low-dimensional materials with both 
parallel and perpendicular multiple bond arrays using designed 
tetradentate Here we report that M o ~ ( O ~ C C H ~ ) ~  
reacts with the cluster acid (C0)9C03(~3-C02H)  to form three 
related high nuclearity clusters of clusters with the general formula 
M~~(~L~-[(C~)~C~~(C(~-CC~Z)I)~(CH~COZ)~-~ [(C0)9C03(~3- 
CC02H)], (m = 3, n = 0 , I ; m  = 4, n = 0 , I I ; m  = 4, n = 2, III). 

M O ~ ( C H ~ C O ~ ) ~  reacts with 2 equiv of (C0)9C03(r3-CC02H) 
in THF at room temperature to give a deep midnight blue solution. 
On immediate cooling, a toluene extract gave needle-like blue- 
black crystals (73%) that were characterized as the solvated 
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Figure 1. ORTEP plot (30% thermal ellipsoids) and selected bond dis- 
tan- (A) and angles (deg) for III: Mo-Mo' 2.1 126 (3), M M 1 1  2.089 
( l ) ,  Mo-012 2.104 ( l ) ,  M A 2 1  2.124 ( l ) ,  Mo-022 2.089 ( l ) ,  (Co- 
CO)eq,av 2.47 (I), (CO-CO)ax,av 2.475 (3); (M*Mo-O)eq,av 92 (I), 01 1- 
C21-021 120.7 (2), 012-C22-022 122.2 (2). 

Scheme I 
(a) 

- ligand functionality 

Scheme I1 

I l l  

tricluster-substituted species IC6H5CH3.12 Crystallization at room 
temperature for days yielded both barlike crystals (- 15%) and 
large pseudorhombohedral crystals (1-2 mm in size, -40%). The 
latter crystals were selected and characterized as the tetraclus- 
ter-substituted, cluster acid adduct III.I3 Another compound, 

(12) Data for I: 'H NMR (300 MHz, CD2C12) 2.34 (s, 3 H), 2.59 (s, 3 
H), 7.20 (m, 5 H) arising from one acetae and a solvate toluene; FT-IR (KBr) 

1494 w, 1448 m, 1440 m, 1366 m. Anal. Calcd for M O ~ C O ~ C ~ ~ O ~ ~ H , ~ :  Co, 
29.50; Mo, 10.67; C, 28.06; H, 0.61. Found: Co, 29.20 Mo, 10.10; C. 27.94; 
H. <OS. 

C H ~  2950 VW, ~ C O ) ~ C O ~ C  2106 S, 2052 VS, 2048 VS, 2045 VS, coo- 1518 W, 
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