SYNTHESIS OF A MODEL, LINEAR D-MANNOPENTAOSE FOR THE NONREDUCING-END SEQUENCE OF THE CELL-SURFACE D-MANNAN OF Escherichia coli, Candida albicans, AND Saccharomyces cerevisiae*

TOMOYA OGAWA** AND HISAO YAMAMOTO***

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351 (Japan) (Received May 24th, 1984; accepted for publication, August 22nd, 1984)

ABSTRACT

Synthesis, in a regio- and stereocontrolled way, of a linear D-mannooligosaccharide, namely, $O \cdot \alpha \cdot \text{Man} \cdot (1 \rightarrow 3) \cdot O \cdot \alpha \cdot \text{Man} \cdot (1 \rightarrow 2) \cdot O \cdot \alpha \cdot \text{Man} \cdot (1 \rightarrow 2) \cdot O \cdot \alpha \cdot \text{Man} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \text{Man}$, which corresponds to a part of the structure of the cell-surface D-mannan of *Escherichia coli*, *Candida albicans*, and *Saccharomyces cerevisiae*, is described.

INTRODUCTION

Linear D-manno-oligosyl structures containing both α -D- $(1\rightarrow 2)$ and α -D- $(1\rightarrow 3)$ interglycosidic linkages have been proposed for partial structures of the microbial, cell-surface glycans. For example, in 1976, Prehm *et al.* proposed² structure **1** for the O9 antigenic polysaccharide found in the outer membrane of *E. coli*. Similar nonreducing-end D-mannosyl sequences were found in the D-mannan structures **2** and **3**, which were proposed for the cell-surface glycans of *Candida albicans*³ and *Saccharomyces cerevisiae*⁴, respectively. As part of a project on the synthesis of microbial glycans, we had reported⁵ a synthesis of the linear D-mannohexaose **4** having an α - $(1\rightarrow 2)$ interglycosidic linkage. We now describe a synthesis of the model, linear D-mannopentaose **5**, which corresponds to the nonreducing-end D-mannosyl sequence of **1**, **2**, and **3**, and which was also isolated from the cell wall of *Hansenula wingei* NRRL Y-2340 (ref. 6) and characterized by its ¹H-N.m.r. data⁷.

RESULTS AND DISCUSSION

Based on a retrosynthetic analysis of 5, the D-mannotriosyl glycosyl acceptor 6 and two D-mannosyl donors (7 and 8) were designed as the key synthetic inter-

^{*}Part 30 in the series, "Synthetic Studies on Cell-surface Glycans". For part 29, see ref. 1.

^{**}To whom inquiries should be addressed.

^{***}Present address: Research and Development Laboratories, Sapporo Breweries, Ltd., 10 Okatohme, Yaizu-shi, Shizuoka, 425, Japan.

$$M = \alpha - D - mannopyranosyl$$

$$M \rightarrow 3M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 6$$

$$M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 2M \rightarrow 2M$$

$$2$$

 $x-Man-(1 \rightarrow 2) - y-Man-(1 \rightarrow 2$

4

..-Man-(1->3)-a-Man-(1->2)- --Man-(1->2)-x-Man-(1->2)- -Man

mediates. As 6 (ref. 5) and 8 (ref. 8) were already available, a synthetic route to 7 was first developed.

Allyl α -D-mannopyranoside (9) was tritylated, to give 10, which was stannylated⁹ with (Bu₃Sn)₂O, and the product alkylated with allyl bromide in the presence¹⁰ of Bu₄NBr, to give a 66% yield of a mixture of the 3-O-allyl (11) and 2-O-allyl (12) derivatives in the ratio of 6:1. Regioselective allylation via the inter-

Structure	Chemical shift (p.p.m.) for each carbon atom								
	1	2	3	4	5	6	-CPh ₃	- <i>C</i> H ₂ -CH=	-CH ₂ Ph
Tr-6M-OA (10)	98.65 (170.0)	71.73	70.68	69.40	70.39	64.54	87.06	67.87	
A-3M-OA (13)	98.76 (168.5)	67.99	78.99	64.66	72.44	60.80		67.76(1-O) 70.86(3-O)	
A-2M-OA (14)	96.77 (168.5)	77.53	70.86	67.17	72.26	61.26		67.52(1-O) 72.26(2-O)	
(Bn) ₃ -2.4,6M-OH (16)	91.44 (168.5)	76.82	70.44	78.75	71.26	69.56			72.72(2-O) 73.25(6-O) 74.59(4-O)

TABLE I

¹³C-N M.R -CHEMICAL SHIFTS OF D-MANNOSE DERIVATIVES^a

^{*a*}The values of δ_c are recorded for solutions in CDCl₃ at 20°, and are expressed in p.p.m. downward from tetramethylsilane. Values in parentheses correspond to ${}^{1}J_{CH}$ in Hz. M = α -D-mannopyranosyl, A = allyl, and Bn = benzyl.

mediacy of the stannylene¹¹ derivative of **10** resulted in a lower yield of the 3-O-allyl derivative **11**. The regiochemistry of **11** and **12** was assigned by converting them into diallyl ethers **13** and **14**, respectively, and by recording their ¹³C-n.m.r. spectra. Thus, the ¹³C-n.m.r. spectrum of **13** contains a deshielded signal at δ 78.99 for C-3, and that of **14** contains a deshielded signal at δ 77.53 for C-2 and a shielded signal for C-1 at δ 96.77 (see Table I). Benzylation of **13** to give **15**, and deallylation of **15** with PdCl₂–NaOAc in aq. AcOH¹² afforded the tri-O-benzyl-D-mannopyranose **16** in 55% overall yield from **13**. Acetylation of **16** to give **17**, and treatment of **17** with HCl afforded the desired chloride **7**. It may be noted that chloride **7** and the bromide corresponding to **7** have recently been prepared by Kong and Schuerch¹³ and by Matta and his coworkers¹⁴, respectively, *via* different routes.

Having prepared the D-mannosyl donor 7, glycosylation of the acceptor 6 with 7 was performed in the presence of $AgOSO_2CF_3$ and powdered molecular sieves 4A, to give an 80% yield of the protected D-mannotetraoside 18. The presence, in the ¹H-n.m.r. spectrum of 18, of a singlet at δ 1.96 for the acetyl methyl group indicated the stereochemical homogeneity of 18, even though the configuration at the newly introduced anomeric carbon atom remained to be assigned later (at the pentasaccharide stage).

O-Deacetylation of 18 afforded the D-mannotetraosyl glycosyl acceptor 19, which was, in turn, glycosylated with the D-mannosyl donor 8, again by use of AgOSO₂CF₃ and powdered molecular sieves 4A, to give a 58% yield of the protected D-mannopentaoside 20. O-Deacetylation of 20, to give 21, and hydrogenolysis of 21 in the presence of 10% Pd-C in AcOH gave the target molecule 5. The regiochemistry of the free D-mannopentaose 5 was evident from the synthetic sequence, and the stereochemistry was firmly assigned according to the ¹H- and ¹³C-n.m.r. data (see Figs. 1 and 2). Thus, in the ¹³C-n.m.r. spectrum, three signals were observed, at δ 102.98, 101.37, and 93.28, having ${}^{1}J_{CH}$ values of ~170 Hz for C-1d and C-1e, C-1b and C-1c, and C-1a, respectively, in accordance with the α -Dconfigurations of the five anomeric carbon atoms¹⁵. The chemical shifts for each anomeric carbon atom were assigned based on the data for both α -D-mannopyranose¹⁶ and the related model D-manno-oligosides^{5,17}. The ¹³C-n.m.r. data for synthetic 5 were found to be in good agreement with those reported by Gorin¹⁸ for a natural sample. ¹H-N.m.r. data for 5 were assignable, as shown in Fig. 1, based on our previous observation for the synthetic D-manno-oligosides^{5,17} and found to be identical with the data for the natural D-mannopentaose reported by Ballou and co-workers7.

In conclusion, D-mannopentaose 5, corresponding to a part of the proposed structure for the lipopolysaccharide of *E. coli* and yeast cell-wall D-mannan, was synthesized unambiguously. The ¹H- and ¹³C-n.m.r. data for the synthetic 5 were

Fig. 1. 400-MHz, ¹H-n.m.r. spectra (in D_2O at 63°) of (a) M_e -3 M_d -2 M_c -2 M_b -2 M_a (5) and (b) M_c -3 M_b -2 M_a . This mannotriose was prepared in a synthetic sequence similar to that in the case of 5. The values of δ_H are expressed in p.p.m. downward from the internal standard, sodium 2,2,3,3-tetradeuterio-4,4-dimethyl-4-silapentanoate.

Fig. 2. ¹³C-N.m.r. spectra (in D₂O at 20°) of (a) M_e -3 M_d -2 M_c -2 M_b -2 M_a (5) and (b) M_c -3 M_b -2 M_a . [The values of δ_c are expressed in p.p.m. downward from tetramethylsilane, referenced indirectly with an internal standard of 1,4-dioxane (δ 67.40). Values in parentheses correspond to U_{CH} in Hz.]

found to be identical with those for a natural sample, thus providing synthetic support for the structure proposed.

EXPERIMENTAL

General. — Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a Perkin–Elmer Model 241 MC polarimeter, for solutions in CHCl₃ at 25°, unless noted otherwise. Column chromatography was performed on columns of Silica Gel Merck (70–230 mesh; E. Merck, Darmstadt, Germany). Flash chromatography was performed on columns of Wako gel C-300 (200–300 mesh; Wako Pure Chemicals, Osaka, Japan). Thin-layer chromatography (t.l.c.) was performed on plates (layer thickness, 0.25 mm) precoated with Silica Gel 60 F_{254} (E. Merck, Darmstadt, Germany). "High performance" thin-layer chromatography (h.p.t.l.c.) was performed on plates (layer thickness, 0.20 mm) precoated with Silica Gel 60 F_{254} (E. Merck, Darmstadt, Germany). I.r. spectra were recorded with an EPI-G2 Hitachi spectrophotometer, using KBr pellets for the crystalline samples, and neat films for the liquid samples. ¹H-N.m.r. spectra were recorded with either a JNM-GX400 or a JNM-FX90Q n.m.r. spectrometer, using tetramethylsilane as the internal standard. ¹³C-N.m.r. spectra were recorded with a JNM-FX 100FT n.m.r. spectrometer operated at 25.05 MHz. The values of δ_c and δ_H are expressed in p.p.m. downwards from the internal standard, for solutions in CDCl₃, unless noted otherwise.

Allyl 6-O-trityl- α -D-mannopyranoside (10). — A mixture of allyl alcohol (500 mL) and acetyl chloride (25 mL) was stirred for 1 h at 25°. To this solution was added D-mannose (100 g, 0.55 mol) with ice cooling, and the mixture was stirred for 9 days at 25°, when t.l.c. showed the disappearance of D-mannose (at R_F 0.15) and appearance of allyl α -D-mannopyranoside (9) at R_F 0.57 (in 2:1 CHCl₃– MeOH). Neutralization with Et₃N (100 mL) and evaporation *in vacuo* afforded crude 9 (172 g). To a solution of 9 (172 g) in pyridine (500 mL) was added trityl chloride (180 g, 0.65 mol), and the mixture was stirred for 16 h at 25°. Evaporation of the solvent *in vacuo*, and flash chromatography through silica gel C-300 (500 g) in toluene, and then in 2:1 toluene–EtOAc, afforded crude 10 (302 g, 95%). An analytical sample of 10 was obtained by rechromatography; $[\alpha]_D + 2.1^\circ$ (*c* 0.72); R_F 0.35 in 2:1 toluene–EtOAc; δ_H 6.1–5.7 (m, 1 H, -CH=CH₂), 5.36–5.10 (m, 2 H, -CH=CH₂), and 4.98 (d, 1 H, J 2 Hz, H-1).

Anal. Calc. for C₂₈H₃₀O₆: C, 72.73; H, 6.49. Found: C, 73.11; H, 6.65.

Allyl 3-O-allyl-6-O-trityl- α -D-mannopyranoside (11) and allyl 2-O-allyl-6-Otrityl- α -D-mannopyranoside (12). — Method A. A mixture of 10 (1.14 g, 2 mmol) and (Bu₃Sn)₂O (900 mg, 1.5 mmol) in toluene (50 mL) was stirred under reflux, with azeotropic removal of water, during 14 h, and 30 mL of toluene was distilled off. To the remaining solution were added allyl bromide (10 mL) and Bu₄NBr (0.1 g) at 80°, and the mixture was stirred thereat for 16 h. Solvent was evaporated *in* vacuo, and the residue, in EtOAc (30 mL), was stirred with saturated aq. KF solution (20 mL) for 3 h at 25°. The precipitated Bu₃SnF was filtered off (Celite), and the organic layer was successively washed with water and satd. saline, dried (MgSO₄), and evaporated *in* vacuo. The residue was chromatographed through silica gel C-300 (20 g) in 2:1 toluene-EtOAc, to give 11 (596 mg, 56%) and 12 (104 mg, 9.8%).

Compound 11: $[\alpha]_D$ +9.7° (*c* 0.60); R_F 0.50 in 2:1 toluene–EtOAc; δ_{tf} 6.2–5.76 (m, 2 H, -CH=CH₂), 5.4–5.1 (m, 4 H, -CH=CH₂), and 4.92 (d, 1 H, J 2 Hz, H-1).

Anal. Calc. for C₃₁H₃₄O₆: C, 74.08; H, 6.82. Found: C, 74.01; H, 6.87.

Compound 12: R_F 0.36 in 2:1 toluene-EtOAc; δ_H 6.2-5.76 (m, 2 H, -CH=CH₂), 5.4-5.1 (m, 4 H, -CH=CH₂), and 4.52 (s, 1 H, H-1), used for the next step without further characterization.

Method B. A mixture of 10 (1.14 g, 2 mmol) and Bu_2SnO (863 mg) in MeOH (20 mL) was stirred under reflux for 16 h. MeOH was evaporated *in vacuo*, and a solution of the residue and allyl bromide (1 mL) in HCONMe₂ (20 mL) was stirred for 16 h at 80°. Processing, and chromatography over silica gel C-300 (20 g) in 2:1 toluene–EtOAc, afforded 11 (405 mg, 33%).

Allyl 3-O-allyl- α -D-mannopyranoside (13). — A solution of 11 (350 mg) in AcOH (20 mL)–H₂O (4 mL) was stirred for 15 min at 80°. Processing, and chromatography over SiO₂–C-300 (20 g) in CHCl₃ and then in 5:1 CHCl₃–MeOH, afforded 13 (150 mg, quant. yield); $[\alpha]_D$ +22.5° (*c* 0.5, MeOH); R_F 0.55 in 1:1 toluene–EtOAc; δ_c 134.39 (-CH=CH₂), 133.57 (-CH=CH₂), 117.78 (-CH=CH₂), and 117.07 (-CH=CH₂).

Allyl 2-O-allyl- α -D-mannopyranoside (14). — A solution of 12 (100 mg) in AcOH (10 mL)–H₂O (4 mL) was stirred for 15 min at 80°. Processing, and chromatography over silica gel C-300 (5 g) in CHCl₃ and then in 5:1 CHCl–MeOH, afforded 14 (40 mg, 93%); R_F 0.56 in 1:1 toluene–EtOAc; δ_c 134.27 (-CH=CH₂), 133.40 (-CH=CH₂), 117.72 (-CH=CH₂), and 116.96 (-CH=CH₂).

Allyl 3-O-allyl-2,4,6-tri-O-benzyl- α -D-mannopyranoside (15). — A solution of 13 (520 mg, 2 mmol) in HCONMe₂ (20 mL) was benzylated with NaH (50%; 316 mg, 6.6 mmol) and benzyl bromide (0.9 mL). Processing, and chromatography over silica gel C-300 (50 g) in 40:1 toluene–EtOAc, gave 15 (930 mg, 87%); [α]_D +26.3° (c 0.20); $R_{\rm F}$ 0.66 in 10:1 toluene–EtOAc; $\delta_{\rm H}$ 7.5–7.1 (m, 15 H, aromatic), 6.1–5.6 (m, 2 H, -CH=CH₂), and 5.4–5.0 (m, 4 H, -CH=CH₂).

Anal. Calc. for C₃₃H₃₈O₆: C, 74.69; H, 7.22. Found: C, 74.29; H, 7.16.

2,4,6-Tri-O-benzyl- α -D-mannopyranose (16). — A mixture of 15 (126 mg, 0.24 mmol), PdCl₂ (50 mg), NaOAc (50 mg), and H₂O (0.1 mL) in AcOH (2 mL) was stirred for 2 days at 25°. Solvent was evaporated *in vacuo*, and a solution of the residue in EtOAc (10 mL) was successively washed with H₂O and satd. saline and dried (MgSO₄). Evaporation of the solvent, and chromatography of the residue over silica gel C-300 (5 g) in 2:1 toluene–EtOAc gave 16 (86 mg, 63%); crystals from *i*-PrOH; m.p. 75–76°, $R_{\rm F}$ 0.13 in 5:1 toluene–EtOAc; $\delta_{\rm H}$ 7.4–7.1 (m, 15 H, aromatic), 5.27 (bs, 1 H, H-1), and 4.9–4.4 (m, 6 H, 3 CH₃Ph).

Anal. Calc. for C₂₇H₃₀O₆: C, 71.98; H, 6.71. Found: C, 72.15; H, 6.63.

3-O-Acetyl-2, 4, 6-tri-O-benzyl- α -D-mannopyranosyl acetate (17). — A mixture of 16 (1.0 g) and Ac₂O (10 mL) in pyridine (20 mL) was stirred for 16 h at 25°. Processing, and chromatography over silica gel C-300 (50 g) in 7:1 toluene–EtOAc, gave 17 (1.1 g, 93%); $[\alpha]_D$ 0° (c 0.25); R_F 0.63 in 3:1 toluene–EtOAc; δ_H 7.4–7.1 (m, 15 H, aromatic), 6.20 (d, 1 H, J 2 Hz, H-1), 5.18 (q, 1 H, J 4, 9 Hz, H-3), 4.13 (t, 1 H, J 9 Hz, H-4), 2.08 (s, 3 H, Ac), and 1.96 (s, 3 H, Ac).

Anal. Calc. for C₃₁H₃₄O₈: C, 69.65; H, 6.41. Found: C, 69.99; H, 6.66.

3-O-Acetyl-2,4,6-tri-O-benzyl- α -D-mannopyranosyl chloride (7). — A solution of 17 (100 mg) in CH₂Cl₂ (10 mL) was saturated with dry HCl at -5° . After standing for 1 h at 25°, solvent was coevaporated with toluene (3 times), to give 7 quantitatively; this was used for the next step without further purification; $R_{\rm F}$ 0.78 in 5:1 toluene–EtOAc.

Benzyl $O(3-O-acetyl-2, 4, 6-tri-O-benzyl-\alpha-D-mannopyranosyl)-[(1\rightarrow 2)-O(3, 4, 6-tri-O-benzyl-\alpha-D-mannopyranosyl)]_2-(1\rightarrow 2)-3, 4, 6-tri-O-benzyl-\alpha-D-mannopyranoside (18). — A mixture of molecular sieves 4A (2 g) and AgOSO_2CF₃ (200 mg) in toluene (10 mL) was evaporated$ *in vacuo* $at 50°. To the residue were added a solution of 6 (290 mg, 208 µmol) in Cl(CH₂)₂Cl (15 mL), and a solution of 7 (110 mg, 215 µmol) in Cl(CH₂)₂Cl (5 mL) dropwise, at <math>-15^{\circ}$. The mixture was stirred for 3 h at 20–25°, and a solution of 7 (20 mg, 67 µmol) in Cl(CH₂)₂Cl (2 mL) was added at -15° . The mixture was stirred for 16 h at 20–25°, diluted with Cl(CH₂)₂Cl (20 mL), and filtered through Celite. The filtrate was washed with aq. NaHCO₃, H₂O, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed through silica gel C-300 (20 g), to give 18 (310 mg, 80%); $[\alpha]_D + 20.0^{\circ}$ (c 0.39); R_F 0.64 in 10:1 toluene–EtOAc; δ_H 1.96 (s, 3 H, Ac) and 7.4–6.9 (m, 65 H, aromatic).

Anal. Calc. for C₁₁₇H₁₂₂O₂₂: C, 74.74; H, 6.54. Found: C, 74.23; H, 6.50.

Benzyl $O-(2,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl)-[(1\rightarrow 2)-O-(3,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl)]_2-(1\rightarrow 2)-3,4,6-tri-O-benzyl-\alpha-D-mannopyranoside (19). — A solution of 18 (260 mg) in oxolane (20 mL) and 0.01M NaOMe-MeOH (30 mL) was stirred for 16 h at 20-25°. Neutralization with Amberlist A-15, and chromatography of the product through silica gel C-300 (5 g) in 10:1 toluene-EtOAc, gave 19 (210 mg, 83%); <math>[\alpha]_D$ +12.8° (c 0.60); R_F 0.74 in 5:1 toluene-EtOAc.

Anal. Calc. for $C_{115}H_{120}O_{21} \cdot 0.5 CH_3CO_2C_2H_5$: C, 74.66; H, 6.64. Found: C, 74.49; H, 6.61.

Benzyl O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzyl- α -D-mannopyranosyl)-[(1 \rightarrow 2)-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)]₂-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranoside (20). — To a mixture of molecular sieves 4A (1 g) and AgOSO₂CF₃ (150 mg) were added a solution of 19 (105 mg, 58 μ mol) in Cl(CH₂)₂Cl (10 mL), and a solution of 8 (100 mg, 189 μ mol) in Cl(CH₂)₂Cl (1 mL) dropwise at -15°, under Ar. The mixture was stirred for 16 h at 20–25°, and diluted with Cl₂CH₂ (30 mL). Processing, and chromatography through silica gel C-300 (10 g) in 10:1 toluene–EtOAc, gave 20 (77 mg, 58%); $R_{\rm F}$ 0.49 in 10:1 toluene–EtOAc; $\delta_{\rm H}$ 2.08 (s, 3 H, Ac).

Benzyl O-(3, 4, 6-tri-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O-benzyl- α -D-mannopyranosyl)- $[(1 \rightarrow 2)$ -O-(3, 4, 6-tri-O-benzyl- α -D-mannopyranosyl)]₂- $(1 \rightarrow 2)$ -3, 4, 6-tri-O-benzyl- α -D-mannopyranoside (21). — A solution of 20 (77 mg) in oxolane (5 mL) and 0.01M NaOMe–MeOH (5 mL) was stirred for 8 h at 20–25°. Processing, and chromatography over silica gel C-300 (15 g) in 5:1 toluene–EtOAc, gave 21 (60 mg, 79.4%); $[\alpha]_D$ +34.5° (c 0.17); R_F 0.59 in 5:1 toluene–EtOAc.

Anal. Calc. for C₁₄₂H₁₄₅O₂₆: C, 75.11; H, 6.57. Found: C, 75.11; H, 6.55.

O- α -D-Mannopyranosyl- $(1\rightarrow 3)$ -O- α -D-mannopyranosyl- $[(1\rightarrow 2)$ -O- α -D-mannopyranosyl]₂- $(1\rightarrow 2)$ - α -D-mannopyranose (5). — A mixture of **21** (55 mg) and 10% Pd-C (30 mg) in AcOH (10 mL) was stirred under H₂ for 6 h at 50°, diluted with water, and filtered through Celite. The filtrate was evaporated *in vacuo*, and the residue was purified with Sephadex G 25 (20 g in H₂O), to give **5** (17 mg, 85.0%); $[\alpha]_{\rm D}$ +27.2° (*c* 0.4, H₂O); $R_{\rm F}$ 0.16 in 2:1:1 BuOH–AcOH–H₂O.

ACKNOWLEDGMENTS

We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, and Dr. H. Homma and his staff for the elemental analyses. We also thank Mrs. A. Takahashi for her technical assistance.

REFERENCES

- 1 T. Ogawa and T. Nukada, Carbohydr. Res., 136 (1985) 135–152.
- 2 P. PREHM, B. JANN, AND K. JANN, Eur. J Biochem., 67 (1976) 53-56.
- 3 R. J. YU, C. T. BISHOP, F. P. COOPER, H.-F. HASENCLEVER, AND F. BLANK, Can. J. Chem., 45 (1967) 2205–2211; Y. FUKAZAWA, A. NISHIKAWA, M. SUZUKI AND T. SHINODA, Med. Mycol Zentralbl. Bakt., Suppl., 8 (1980) 127–136.
- 4 C E. BALLOU, Adv. Microb. Physiol., 14 (1976) 93–158; R. E. COHEN, L. BALLOU AND C. E. BALLOU, J. Biol. Chem., 255 (1980) 7700–7707.
- 5 T. OGAWA AND H. YAMAMOTO, Carbohydr. Res., 104 (1982) 271-283.
- 6 P. H. YEN AND C. E. BALLOU, Biochemistry, 13 (1974) 2420-2427.
- 7 C. HASHIMOTO, R. E. COHEN, AND C. E. BALLOU, Biochemistry, 19 (1980) 5932-5938.
- 8 M. M. PONPIPOM, *Carbohydr. Res.*, 59 (1977) 311-317; T. Ogawa, K. Katano, and M. Matsul, *ibid.*, 63 (1978) C3-C9; T. Ogawa and K. Sasajima, *ibid.*, 93 (1981) 231-240.
- 9 T. OGAWA AND M. MATSUI, Carbohydr. Res., 51 (1976) c13-c18; 54 (1977) c17-c21; 56 (1977) c1-c6; J Am. Chem. Soc., 98 (1976) 1629-1630; Tetrahedron, 37 (1981) 2363-2369.
- 10 A. VEYRIÈRES, J. Chem. Soc., Perkin Trans. 1, (1981) 1626-1629.
- 11 D WAGNER, J P. H. VERHEYDEN, AND J. G. MOFFATT, J. Org. Chem., 39 (1974) 24-30; C. AUGE, S. DAVID, AND A. VEYRIÈRES, J. Chem. Soc., Chem Commun., (1976) 375-376; R. M. MUNAVU AND H. H. SZMANT, J. Org. Chem., 41 (1976) 1832-1836; M. A. NASHED AND L. ANDERSON, Tetrahedron Lett., (1976) 3503-3506; Carbohydr. Res., 56 (1977) 325-336.
- 12 R. BOSE AND R. SCHEFFOLD, Angew. Chem., 88 (1976) 578–579, T. OGAWA AND S. NAKABAYASHI, Carbohydr Res., 93 (1981) c1-c5.
- 13 F KONG AND C. SCHUERCH, Carbohydr. Res., 112 (1983) 141-147.
- 14 S. S. RANA, J. J. BARLOW, AND K. L. MATTA, Carbohydr. Res., 88 (1981) c20-c23.
- 15 K. BOCK, I. LUNDT, AND C. PEDERSEN, Tetrahedron Lett., (1973) 1037–1040; K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293–297; Acta Chem. Scand., Ser. B, 29 (1975) 258–264
- 16 W VOELTER, V. BÍLIK, AND E. BREITMAIER, Collect. Czech. Chem. Commun., 38 (1973) 2054-2071
- 17 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 97 (1981) 205-227.
- 18 P. A. J. GORIN, Can. J. Chem., 51 (1973) 2375-2383