Published on 01 January 1984. Downloaded by University of Birmingham on 31/10/2014 14:42:41.

The First Mononuclear Pt^{III} Complex. Molecular Structures of $(NBu_4)[Pt^{III}(C_6CI_5)_4]$ and of Its Parent Compound $(NBu_4)_2[Pt^{II}(C_6CI_5)_4]\cdot 2CH_2CI_2$

Rafael Usón,*a Juan Forniés,a Milagros Tomás,a Babil Menjón,a Karlheinz Sünkel,b and Robert Baub

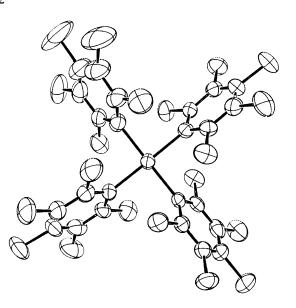
^a Department of Inorganic Chemistry, University of Zaragoza, Zaragoza, Spain
 ^b Department of Chemistry, University of Southern California, Los Angeles, California, U.S.A.

 $(NBu_4)[Pt^{III}(C_6Cl_5)_4]$, fully characterized by crystallographic, spectral, and magnetic measurements has been isolated by oxidation with halogens or TICl₃ of the parent compound $(NBu_4)_2[Pt^{III}(C_6Cl_5)_4]$, which has also been analysed by *X*-ray crystallography.

Several bi- or poly-nuclear complexes containing platinum formally in the Pt^{III} oxidation state have been characterized.¹ All of them have Pt-Pt bonds. The preparation of $Pt(NH_3)_2(SCN)_2I$, which according to its e.s.r. spectrum could be a Pt^{III} compound, has been claimed.²

Now we report the preparation and structural characterization of the first well authenticated monomeric Pt^{III} complex. A systematic study of the reactions between halogens and a series of anionic mono- or bi-nuclear pentafluoro- or pentachloro-phenyl derivatives of Pd or Pt, recently described by some of us,³ has revealed that only the Pt^{II} complex (NBu₄)₂[Pt(C₆Cl₅)₄] can be oxidized to a stable M^{III} complex. Thus, if Cl₂ or Br₂ (in CCl₄ solution) was added to the colourless dichloromethane solution of the Pt^{II} complex, the instantaneous development of a deep-blue colour was observed and a blue Pt^{III} complex, formed according to equation (1), was isolated in 90% yield.

$$(NBu_4)_2[Pt(C_6Cl_5)_4] + 1/2 X_2 \longrightarrow (NBu_4)[Pt(C_6Cl_5)_4] + NBu_4X \qquad (1)$$


The same Pt^{III} compound was obtained by treating the Pt^{II} precursor with iodine or thallium(III) chloride, albeit in lower

yields. With iodine a brown solution was formed, which after evaporation to dryness and extraction with chloroform (in which the Pt^{III} complex is only slightly soluble), gave blue (NBu₄)[Pt(C₆Cl₅)₄] (60% yield). With TlCl₃ [equation (2)], a blue solution was formed and the TlCl precipitated. Partial evaporation of the solution allowed separation of some of the Pt^{III} complex (52% yield) from the co-soluble (NBu₄)[TlCl₄] complex.

 $(NBu_4)_2[Pt(C_6Cl_5)_4] + 3/2 \text{ TlCl}_3 \longrightarrow$

$$(NBu_4)[Pt(C_6Cl_5)_4] + (NBu_4)[TlCl_4] + 1/2 TlCl (2)$$

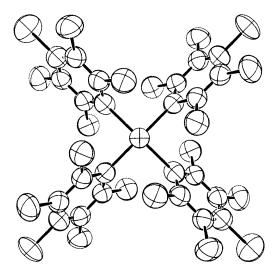

At room temperature (NBu₄)[Pt(C₆Cl₅)₄] is air- and moisture-stable, both as a solid and in solution. It melts (with decomposition) at 210 °C. In acetone solution it behaves as a 1:1 electrolyte ($\Lambda_{\rm M} = 125 \ \Omega^{-1} \, {\rm cm}^2 \, {\rm mol}^{-1}$).⁴ The i.r. spectrum of the compound (Nujol) shows the absorptions due to C₆Cl₅ shifted 10—15 cm⁻¹ towards higher energies relative to the corresponding ones of the Pt^{II} parent complex (NBu₄)₂[Pt(C₆Cl₅)₄]. A single absorption at 830 cm⁻¹ (Xsensitive mode⁵) along with another at 602 cm⁻¹ [assignable to v(Pt-C)⁶] are in agreement with the square-planar

Figure 1. The molecular geometry of the $[Pt(C_6Cl_5)_4]^-$ anion in the Pt^{III} complex (NBu₄)[Pt(C_6Cl_5)_4]. Average Pt-C, C-C, and C-Cl distances in the anion are 2.094(8), 1.388(12), and 1.725(9) Å, respectively.

symmetry of the anion $(D_{4h}, E_u \text{ mode})$. The Pt^{III} compound is paramagnetic: two independent magnetic susceptibility measurements⁷ yield μ_{eff} 2.4—2.5 μ_B at low temperature (T = 6—80 K), consistent with a spin 1/2 system with a large orbital contribution. This observation is also consistent with a d⁷ electronic configuration for the [Pt(C₆Cl₅)₄]⁻ anion.

The crystal structures of both $(NBu_4)[Pt(C_6Cl_5)_4]$ (Figure 1)[†] and its parent complex $(NBu_4)_2[Pt(C_6Cl_5)_4] \cdot 2CH_2Cl_2$ (Figure 2)[†] show virtually identical square-planar geometries. The average Pt–C, C–C, and C–Cl distances, and interatomic angles of the two anions, all agree within experimental error. {For $(NBu_4)[Pt(C_6Cl_5)_4]$, Pt–C 2.094(8), C–C 1.388(12), C–Cl 1.725(9) Å; for $(NBu_4)_2[Pt(C_6Cl_5)_4]$, Pt–C 2.086(14), C–C 1.393(16), C–Cl 1.731(12) Å.} Even the average tilt angles (*i.e.*, the angles between the C₆Cl₅ rings and the central PtC₄ square plane) are essentially the same: 63.0° for the dark-blue Pt^{III} anion, $[Pt(C_6Cl_5)_4]^-$ (Figure 1), and 63.1° for the pale yellow (nearly colourless) Pt^{II} precursor, $[Pt(C_6Cl_5)_4]^{2-}$ (Figure 2). The $[Pt(C_6Cl_5)_4]^-$ anions in the crystal structure of $(NBu_4)[Pt(C_6Cl_5)_4]$ are widely separated

Figure 2. The molecular geometry of the $[Pt(C_6Cl_5)_4]^{2-}$ anion in the Pt^{II} complex $(NBu_4)_2[Pt(C_6Cl_5)_4]\cdot 2CH_2Cl_2$. Note that this is essentially identical to that of the Pt^{III} complex shown in Figure 1. Average Pt–C, C–C, and C–Cl distances in this anioin are 2.086(14), 1.393(16), and 1.731(12) Å, respectively.

and show no evidence for the presence of $Pt \cdots Pt$ stacking interactions (the closest $Pt \cdots Pt$ distance is 9.7 Å).

Both the dark blue (almost black) crystals and the solutions of $(NBu_4)[Pt(C_6Cl_5)_4]$ show notable stability, which is probably unique to the C_6Cl_5 ligand since oxidation with halogens of other $[Pt^{II}X_4]^{2-}$ precursors did not lead to similar Pt^{III} complexes. A steric shielding of the Pt^{III} atom by the bulky C_6Cl_5 ligands cannot be invoked since the geometries of the Pt^{II} and Pt^{III} complexes are virtually identical. However, a steric barrier could be responsible for the lack of any observable dimerisation and therefore for the paramagnetic behaviour of the complex.

One of us (R. B.) thanks the U.S. National Science Foundation for financial support. R. U. thanks the C.A.-I.C.Y.T. (Spain) for a grant.

Received, 12th March 1984; Com. 324

References

- J. Kuyper and K. Vrieze, *Transition Met. Chem.*, 1976, 1, 208;
 B. R. Steele and K. Vrieze, *ibid.*, 1977, 2, 169; H. L. Conder, F. A. Cotton, L. R. Falvello, S. Han, and R. A. Walton, *Inorg. Chem.*, 1983, 22, 1887, and references therein; L. S. Hollis, M. M. Roberts, and S. J. Lippard, *ibid.*, p. 3637; K. Matsumoto, H. Takahashi, and K. Fuwa, *ibid.*, p. 4086.
- 2 G. S. Muraveiskaya, G. M. Larin, and V. F. Sorokina, *Zh. Neorg. Khim.*, 1968, 13, 1466; *Russ. J. Inorg. Chem.*, 1968, 13, 771; F. R. Hartley in, 'The Chemistry of Platinum and Palladium,' Applied Science, London, 1973, p. 21.
- 3 R. Usón, J. Forniés, F. Martínez, and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888; R. Usón, J. Forniés, F. Martínez, M. Tomás, and I. Reoyo, Organometallics, 1983, 2, 1386.
- 4 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 5 E. Maslowsky, Jr., 'Vibrational Spectra of Organometallic Compounds,' Wiley, New York, 1977, p. 437.
- 6 J. Casabó, J. M. Coronas, and J. Sales, *Inorg. Chim. Acta*, 1974, 11, 5.
- 7 F. Palacio, unpublished results; K. Sünkel and C. A. Reed, unpublished results.

[†] Crystal data for $(NBu_4)[Pt(C_6Cl_5)_4], C_{40}H_{36}Cl_{20}NPt, M = 1434.88,$ triclinic, space group P1 (No. 2), a = 9.747(8), b = 16.170(8), c = 16.170(8)17.675(8) Å, $\alpha = 104.95(3)$, $\beta = 92.09(5)$, $\gamma = 77.67(5)^{\circ}$, U = 2629(2)Å³, $D_c = 1.79$ g cm⁻³, Z = 2. X-Ray data were collected on a Nicolet/Syntex P2₁ diffractometer using Mo- K_{α} radiation. The structure was solved by standard heavy-atom techniques and refined to a 3.3% for final R factor of 4786 reflections. $(NBu_4)_2[Pt(C_6Cl_5)_4] \cdot 2CH_2Cl_2, C_{58}H_{76}Cl_{24}N_2Pt, M = 1847.22, tetra$ gonal, space group P4/nnc (No. 126), a = b = 14.407(6), c = 19.929(8)Å, U = 4135(3) Å³, $D_c = 1.49$ g cm⁻³, Z = 2. X-Ray data were collected as in the previous case, and the structure refined to a final Rfactor of 4.6% for 951 reflections. The structure determination of this compound was complicated by disorder effects, not only in the n-butyl groups of the cations but also in the CH₂Cl₂ molecules of crystallization. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.