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Abstract  

 

In this work, we report on second order nonlinear optical (NLO) susceptibilities of some 

substituted 4-(5-nitro-1,3-benzoxazol-2-yl)aniline chromophores that were embedded into 

photopolymer matrices. Depending on the photo-induced nitrogen laser (wavelength 371 nm) 

power density of photo-solidification we found an optimal photo-solidification parameter to 

achieve maximum second harmonic generation (SHG). The influence of the π-conjugated 

bonds on the output second order susceptibility and HOMO-LUMO level positions is 

analysed. The performed experiments are compared with the theoretically calculated 

microscopic hyper-polarizabilities obtained within the B3LYP DFT approach. The possible 

operation by the output SHG efficiency versus the photoinduced laser power density is 

presented. The role of the intra-molecular and surrounding polymers in the observed nonlinear 

optical behaviour is explored. 
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1. Introduction 
 

Recently, one can observe an enhanced interest in the search of organic chromophores, 

which possess second-order optical effects for their application in second-order nonlinear 

optics (NLO) [1‒11] and in laser modulators, deflectors, telecommunications and optical 

information processes [12‒14]. Such materials are developed in different directions: 

modification of π-conjugated bonds, addition of highly polarized backside groups, and 

formation of d-π metal–ligand charge transfer complexes [15‒18]. General theory on the 

phenomenological and microscopic levels was developed in Refs. [19‒26]. Main efforts were 

devoted for achieving the higher order hyper-polarizabilities [27, 28]. A flexible approach 

describing the possible ways for enhancement of the second order susceptibilities near the 

resonance and off-resonance cases was proposed recently [29, 30]. For this approach two 

principal parameters are proposed to utilize – the energy of the transition from the ground to 

the first excited states, and the second one – the number of effective conjugated electrons. 

This article presents further development of this approach by incorporation of the 

small size organic NLO chromophores into the photopolymer matrices. By varying the power 

of photo-solidifying UV laser, it was shown a possibility of operation by second-order 

nonlinear optical constants using external photo-solidifying laser field with assistance of dc-

electric aligned field. As a consequence, macroscopic susceptibility will be field oriented.  All 

the earlier works usually neglected this influence. 

As a chromophore for the NLO effects, we have applied novel nitro-benzoxazole 

derivatives presenting the non-symmetric chromophores which can be applied for nonlinear 

optics of chromophores with relatively small size. Benzoxazole-derivatives have been already 

studied for their NLO effects, but most of these researches were done on the polymers 

containing benzoxazole moiety in the side chain [31‒37]. Non-polymeric derivatives have 

been also studied, but till now only the molecules with different substituent architecture, when 

compared to our research, were used [38‒46]. Small and simple donor-acceptor molecules 

investigated in this work have not been studied yet, and the observed results could be used as 

a reference for longer, differently substituted benzoxazole molecules. Benzoxazole-

derivatives proposed in the present work had been preliminarily studied for their NLO effects 

in powder form, however the obtained efficiency was low (about 0.8 pm/V for λ=1064 nm). 

Their interactions with the polymer matrix will be more efficient due to possible superposition 

of the external fields. During the UV photo-solidification between the chromophore and 

surrounding polymer matrix there remains some small liquid (non-solidified sheets on the 
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borders of photopolymer-chromophore) which allows orienting spatially particular 

chromophore by external fields as described previously [47,48]. We also performed the DFT 

simulations of molecular hyper-polarizabilities of the synthesized compounds, in order to 

compare with the measured second harmonic generation (SHG). The origin of the nonlinear 

optical effects is discussed with respect to the space distribution of the particular HOMO and 

LUMO levels as well as energy magnitudes of their levels. 
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2. Experimental  

 

2.1. General considerations 

 
All the solvents used for the reactions and purifications were purchased from Dorchem 

(Polish supplier), and were of analytical grade. Dichloromethane used for spectroscopic and 

electrochemical studies was of spectrophotometric grade (Alpha Aesar). Silica Gel 60 and 

Aluminium Oxide 90 for a column chromatography were purchased from Merck. 

Polyphosphoric acid, 4-nitro-2-aminophenol, 2-aminophenol, benzoic acid, 4-bromobenzoic 

acid, N,N-dimethyl-4-aminobenzoic acid, diphenylamine, N-methylaniline, 1,2,3,4-

tetrahydroquinoline, (1-naphtyl)phenylamine, sodium tert-butylate, (2-biphenyl)di-tert-

butylphosphine, tetrabutylammonium hexafluorophosphate, ferrocene and Pd2dba3 were 

purchased from Alfa Aesar or Aldrich and used without further purification. CDCl3 with TMS 

was purchased from Aldrich. Melting points were measured on an MEL-TEMP II apparatus 

and they are uncorrected. 1H NMR and 13C NMR were recorded at 600 MHz and 150 MHz, 

respectively, with a Bruker Avance III 600 spectrometer using CDCl3 as a solvent. The 

chemical shifts were given in ppm (δ) from TMS as an internal standard. Elemental analyses 

were conducted at Elementar Vario MICRO cube. Diffraction data were collected for single 

crystals either with an Agilent Technologies SuperNova™ diffractometer, (low-temperature 

Cryo-Jet device, Atlas CCD detector) [49], using Mo Kα radiation (except of D_RT which 

was measured using Cu Kα radiation) or with the Nonius KappaCCD diffractometer using 

graphite monochromated Mo Kα radiation (data collection: COLLECT [50], cell refinement: 

HKL SCALEPACK [51], data reduction: HKL DENZO and SCALEPACK [51]). Cyclic 

voltammetry (CV) measurements were carried out on a PalmSens3 potentiostat. One platinum 

wire (ø = 0.5 mm) and platinum coil (ø = 1.6 mm) were used as a counter and working 

electrodes, respectively. Non aqueous electrode (Ag/Ag+) designed and provided by ALS was 

used as a quasi-reference electrode. The potential of quasi-reference electrode was calibrated 

using the ferrocene as an internal standard. The solutions of compounds under the study 

(∼5⋅10-4 M) were prepared in suitable electrolyte (∼1⋅10-1 M solution of Bu4N
+PF6

– in 

dichloromethane), the measurements were conducted at room temperature with the scan rate 

of 100 mV/s. Prior to the measurements, the solutions were purged with argon to remove 

residual oxygen. The dyes concentration used for spectroscopic measurements amounted to 
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ca. 5⋅10−6 M. UV-Vis. electronic absorption spectra in dichloromethane were recorded using a 

Shimadzu UV-2101 PC spectrometer. 

 

2.2. Synthetic procedures and NMR spectroscopy 

 

2.2.1. 2-(4-Bromophenyl)-5-nitro-1,3-benzoxazole: 4-nitro-2-aminophenol (50 mmol) and 4-

bromobenzoic acid (50 mmol) were mixed with polyphosphoric acid (100 g). The reaction mixture 

was magnetically stirred for 24 hours at 110 °C (the flask was stopped with anhydrous calcium 

chloride tube) applying known procedure [52]. Then the reaction mixture was poured into ice-water 

and formed a waxy precipitate. After being neutralized with Na2CO3, the precipitate formed a light-

brown powder, which was filtered off, washed with water and dried in air. Crude product was 

dissolved in CHCl3 and flashed through aluminium oxide. The obtained yellowish powder was pure 

enough for the next steps, 8.59 g (54%). Small sample was recrystallized from toluene, light-yellow 

needles, m.p. 248-249°C. 1H NMR (600 MHz, CDCl3): δ = 8.66 (d, J = 2.2 Hz, 1H), 8.34 (dd, J = 8.9, 

2.3 Hz, 1H), 8.13-8.15 (m, 2H), 7.71-7.73 (m, 2H), 7.69 (d, J = 8.9 Hz, 1H). 13C NMR (150 MHz, 

CDCl3): δ = 165.1, 154.2, 145.6, 142.5, 132.5, 129.4, 127.6, 124.9, 121.4, 116.4, 110.8. Anal. Calcd. 

for C13H7BrN2O3: C 48.93, H 2.21, N 8.78. Found: C 48.60, H 2.19, N 9.01. 

 
2.2.2. N,N-Dimethyl-4-(5-nitro-1,3-benzoxazol-2-yl)aniline (DMA): 4-nitro-2-aminophenol (10 mmol) 

and N,N-dimethyl-4-aminobenzoic acid (11 mmol) were mixed with polyphosphoric acid (20 g). The 

reaction mixture was magnetically stirred for 24 hours at 110 °C (the flask was stopped with 

anhydrous calcium chloride tube). Then the reaction mixture was poured into ice-water. A precipitate 

was filtered off, washed with water and dried in air. Crude product was crystallised twice from DMF. 

Yellow-golden plates, 1.35 g (48%), m.p. 247-248 °C. 1H NMR (600 MHz, CDCl3): δ = 8.53 (d, J = 

2.2 Hz, 1H), 8.22 (dd, J = 8.8, 2.3 Hz, 1H), 8.08-8.11 (m, 2H), 7.57 (d, J = 8.8 Hz, 1H), 6.76-6.78 (m, 

2H), 3.10 (s, 6H). 13C NMR (150 MHz, CDCl3): δ = 167.2, 154.3, 153.0, 145.2, 143.3, 129.6, 120.0, 

115.0, 112.6, 111.5, 109.9, 40.1. Anal. Calcd. for C15H13N3O3: C 63.60, H 4.63, N 14.83. Found: C 

63.82, H 4.52, N 14.78. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

2.2.3. General procedure for the synthesis of N-methyl-4-(5-nitro-1,3-benzoxazol-2-yl)-N-

phenylaniline (MPA), 4-(5-nitro-1,3-benzoxazol-2-yl)-N,N-diphenylaniline (DPA), N-(1-naphtyl)-4-

(5-nitro-1,3-benzoxazol-2-yl)-N-phenylaniline (NPA) and 1-[4-(5-nitro-1,3-benzoxazol-2-yl)phenyl]-

1,2,3,4-tetrahydroquinoline (THQ):  

638 mg (2 mmol) of 2-(4-bromophenyl)-5-nitro-1,3-benzoxazole was dissolved in 15 ml of toluene 

(dried over molecular sieves 4A). Toluene was deoxygenated before use by purging with dry argon. 

Then 269 mg (2.8 mmol) of sodium tert-butylate was added, followed by 37 mg (2 mol %) of 

Pd2(dba)3 and 30 mg (5 mol%) of (2-biphenyl)di-tert-butylphosphine, applying known procedure [53]. 

As the last, 2.4 mmol of corresponding amine was added; the flask was stopped with septa and the 

reaction mixture was stirred at ambient temperature under argon atmosphere for 48 h. After that, the 

reaction mixture was filtered; a precipitate was washed with toluene. The solvent was removed under 

reduced pressure; the residue was dissolved in CHCl3 and flashed over Aluminium Oxide. The 

solution was then concentrated and the product was adsorbed on Silica Gel 60 and the solvent was 

removed. A dry adsorbent was put on the Silica Gel 60 column and eluted with toluene / petroleum 

ether (1:1) mixture. Resulted yellow solid was crystallized from toluene. 

 

2.2.3.1. N-Methyl-4-(5-nitro-1,3-benzoxazol-2-yl)-N-phenylaniline (MPA): N-methylaniline was used 

as an amine. In this case, the reaction was quenched with water, and the product was extracted with 

ethyl acetate. The extract was dried over anhydrous MgSO4 and flashed through aluminium oxide. 

Crude product was purified according to the general procedure to give 453 mg (66 %) of an yellow 

powder, m.p. 185-188 °C. 1H NMR (600 MHz, CDCl3): δ = 8.54 (d, J = 2.2 Hz, 1H), 8.24 (dd, J = 8.8, 

2.2 Hz, 1H), 8.04-8.06 (m, 2H), 7.59 (d, J = 8.8 Hz, 1H), 7.42-7.45 (m, 2H), 7.25-7.27 (m, 3H), 6.86-

6.88 (m, 2H), 3.42 (s, 3H). 13C NMR (150 MHz, CDCl3): δ = 166.8, 154.3, 152.3, 147.1, 145.2, 143.1, 

129.9, 129.4, 126.2, 125.8, 120.2, 115.2, 114.5, 114.3, 110.1, 40.3. Anal. Calcd. for C20H15N3O3: C 

69.56, H 4.38, N 12.17. Found: C 69.40, H 4.25, N 12.20. 

 

2.2.3.2. 4-(5-Nitro-1,3-benzoxazol-2-yl)-N,N-diphenylaniline (DPA): diphenylamine was used as an 

amine following the general procedure to give 314 mg (39 %) of yellow plates, m.p. 199-201 °C. 1H 

NMR (600 MHz, CDCl3): δ = 8.57 (d, J = 2.2 Hz, 1H), 8.26 (dd, J = 8.9, 2.3 Hz, 1H), 8.04-8.06 (m, 

2H), 7.61 (d, J = 8.9 Hz, 1H), 7.33-7.36 (m, 4H), 7.15-7.20 (m, 6H), 7.09-7.11 (m, 2H). 13C NMR 

(150 MHz, CDCl3): δ = 166.2, 154.3, 151.8, 146.4, 145.3, 143.0, 129.7, 129.2, 126.0, 124.8, 120.5, 

120.4, 117.5, 115.6, 110.3. Anal. Calcd. for C25H17N3O3: C 73.70, H 4.21, N 10.31. Found: C 73.56, H 

4.06, N 10.28. 

 

2.2.3.3. N-(Napht-1-yl)-4-(5-nitro-1,3-benzoxazol-2-yl)-N-phenylaniline (NPA): (1-

naphtyl)phenylamine was used as an amine following the general procedure to give 202 mg (22%) of 

an yellow powder, m.p. 206-208°C. 1H NMR (600 MHz, CDCl3): δ = 8.55 (d, J = 2.2 Hz, 1H), 8.23 
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(dd, J = 8.9, 2.3 Hz, 1H), 7.99-8.02 (m, 2H), 7.92 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.85 (d, 

J = 8.3 Hz, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.48-7.53 (m, 2H), 7.39-7.41 (m, 2H), 7.29-7.32 (m, 2H), 

7.23-7.25 (m, 2H), 7.09-7.12 (m, 1H), 6.96-6.98 (m, 2H). 13C NMR (150 MHz, CDCl3): δ = 166.3, 

154.3, 152.3, 146.5, 145.3, 143.0, 142.0, 135.3, 130.9, 129.6, 129.3, 128.6, 127.6, 127.5, 126.9, 126.5, 

126.4, 124.4, 124.3, 123.7, 120.4, 118.6, 116.8, 115.5, 110.2. Anal. Calcd. for C29H19N3O3 : C 76.14, 

H 4.19, N 9.19. Found: C 76.20, H 4.15, N 9.10. 

 

2.2.3.4. 1-[4-(5-nitro-1,3-benzoxazol-2-yl)phenyl]-1,2,3,4-tetrahydroquinoline (THQ): 1,2,3,4-

tetrahydroquinoline was used as an amine following the general procedure to give 155 mg (21%) of 

light-orange plates, m.p. 189-190 (dec.)°C. 1H NMR (600 MHz, CDCl3): δ = 8.58 (d, J = 2.2 Hz, 1H), 

8.27 (d, J = 8.8, 2.3 Hz, 1H), 8.12-8.14 (m, 2H), 7.62 (d, J = 8.9 Hz, 1H), 7.31-7.33 (m, 2H), 7.20 (d, J 

= 8.1 Hz, 1H), 7.14 (br d, J = 7.5 Hz, 1H), 7.06-7.09 (m, 1 H), 6.91 (td, J = 7.4, 1.2 Hz, 1H), 3.73 (t, J 

= 6.1 Hz, 2H), 2.80 (t, J = 6.4 Hz, 2H), 2.05 (quintet, J = 6.2 Hz, 2H). 13C NMR (150 MHz, CDCl3): δ 

= 166.3, 154.3, 151.8, 145.3, 143.0, 141.6, 129.29, 129.26, 129.22, 126.4, 121.6, 120.5, 119.8, 119.4, 

117.5, 115.6, 110.3, 49.1, 27.4, 23.7. Anal. Calcd. for C22H17N3O3 : C 71.15, H 4.61, N 11.31. Found: 

C 71.01, H 4.52, N 11.35. 

 

2.2.4. N,N-Dimethyl-4-(1,3-benzoxazol-2-yl)aniline (D): 2-aminophenol (25 mmol) and N,N-dimethyl-

4-aminobenzoic acid (25 mmol) were mixed with polyphosphoric acid (50 g). The reaction mixture 

was magnetically stirred for 24 hours at 110 °C (the flask was stopped with anhydrous calcium 

chloride tube). Then the reaction mixture was poured into ice-water. Precipitate was filtered off, 

washed with Na2CO3 solution and water and dried in air. Crude product was crystallized ten times 

from toluene. Colourless plates, 3.50 g (59%), m.p. 185-187 °C (Lit. 182.3-183.7 °C [54]). 1H NMR 

and 13C NMR match those found earlier [54]. Anal. Calcd. for C15H14N2O: C 75.61, H 5.92, N 11.76. 

Found: C 75.70, H 5.90, N 11.78. 

 
2.2.5. 2-Phenyl-5-nitro-1,3-benzoxazole (A): That compound was prepared according to a known 

procedure from 10 mmol of 4-nitro-2-aminophenol and benzoic acid [55]. Colourless plates, 1.34 g 

(56%), m.p. 174-175 °C (Lit. 177 °C [56]). 1H NMR and 13C NMR match those found earlier [56]. 

Anal. Calcd. for C13H8N2O3: C 65.00, H 3.36, N 11.66. Found: C 65.28, H 3.35, N 11.50. 
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Fig. 1. General molecular formula of the studied chromophores 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

3. Results and discussion 

 

3.1. X-ray crystallography 

 

Crystal structure studies were performed for DMA (Fig. 2 (1)), DPA (Fig. 2 (2)) and THQ 

(Fig. 2 (3)) derivatives and for reference compounds: 2-phenyl-5-nitro-1,3-benzoxazole 

(acceptor-group-only) A (Fig. 2 (4) and N,N-imethyl-4-(1,3-benzoxazol-2-yl)aniline (donor-

group-only) D (Fig. 2 (5)). All studied crystals were obtained by slow cooling of hot and 

saturated toluene solutions.  
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Fig. 2. The shape of molecules for DMA_LT (1), DPA_LT (2), THQ_LT (3), A_LT (4) and D_LT 

(5) with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. 

 

Crystal data, intensity measurement conditions and structure refinement details of the 

compounds are given in Table S1 (see Supplementary Data). The programs used for the 

crystal structures analyses were working under WinGX environment [57]. SIR92 was used for 

solving the structures with direct methods [58]. SHELXL2013 was used for the refinement of 
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the structures [59]. ORTEP3 was used in the preparation of molecular graphics [60]. The 

supplementary materials could be found at CCDC [61]. 

 

Selected bond lengths (Å), valence angles (º), torsion angles (º) and dihedral angles (º) for 

studied molecules correlated with the mean of the appropriate values found in the comparable 

molecules taken from CCDC are listed in Table S2 (see Supplementary Data). The bond 

lengths observed in the benzoxazole moiety are very similar in all studied compounds and 

agree well with those deposited so far in CCDC data base (see references bellow Table S2 in 

Supplementary Data). The external C(14)-N(20) bond length is significantly influenced by the 

type of substituents on amine nitrogen atom N(20). The effect depends on conjugation 

between the lone pair of amine group and π-electron system of phenyl ring, and was also 

observed for 6-amino-1H-pyrazolo[3,4-b]quinoline derivatives [62]. The internal valence 

angles in the oxazole ring match the values from CCDC data base, however those in the 

benzene ring of benzoxazole moiety are clearly influenced by the nitro group at C(5) [63]. It 

is worth to emphasize that the dihedral angle between the benzoxazole moiety and phenyl 

substituent at C(2) is close to 0° in all studied structures, suggesting strong conjugation of 

those π-systems. The packing of molecules is shown in Fig. S1‒S5 (see Supplementary Data). 

As can be seen from Table S3 (see Supplementary Data) there is no strong or moderate 

intermolecular interactions in the crystal structures. The geometry found for the molecules in 

the crystalline state should be also preserved for the molecules in the polymer matrix and thus 

could be considered as responsible for particular physical properties of the studied non-linear 

optical materials. 

 

3.2. Non-linear optical studies 

  

Such prepared microcrystalline chromophores were embedded into the liquid 

oligoetheracrylate (OEA) photopolymers using a method similar to the described earlier [64]. 

The solidification was performed by 371 nm pulsed nitrogen laser with power density varied 

up to 400 MW/cm2 by Glan polarizer. The additional dc-electric field was applied in order to 

align the chromophores. 

Second-order non-linear optical susceptibilities were measured by the Kurtz powder test 

where a polymer supported the crystalline powder. The Nd: YAG laser operating at 1064 nm 

and possessing pulses of 12 ns, maximal power 0.95 MW, pulse repetition frequency 13 Hz 
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was applied as the fundamental ones. The exploration of photoinduced changes was 

performed by a spectrophotometer with 2 nm spectral resolution connected to the CCD 

camera. This detector registered the 532 nm doubled frequency signal and cut the 

fluorescence scattering noise. The reference samples were BiBO3 single crystals. 

As a consequence, we have determined the effective susceptibility of the polymer/powder 

compounds. Taking into account the second-order non-linear optical susceptibilities we 

obtained hyperpolarizability magnitudes. The optimized concentration for the titled molecules 

was equal to 12 %. The increase of this content favoured aggregation which limit the 

efficiency of the SHG output.  

The microscopic view of such a poled polymer is presented in Fig. 3. 

 

 
 
Fig. 3. Microscopic image of the photopolymerized dc-field aligned chromophore (the scale bar size is 

equal to 100 µm). 

 

The presented composite (Fig. 3) show an existence of the aligned crystallite chromophore. 

Moreover during the solidification between the chromophore and the polymer there occurs 

some voids which are responsible for the ability of the chromophore to be oriented in the 

external dc-electric field.  

 The performed time kinetics SHG measurements (not presented here) have shown that 

the most effective SHG output was achieved for the samples NPA.   

 

The huge temporary shift of the SHG maxima (29.2 ns) indicates on the occurrence of the 

trapping levels favouring additional light scattering. The output SHG is very sensitive to the 

photo solidifying laser beam power density (see Fig. 4) with laser beam diameter about 2.2 

mm. 
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Fig. 4. Dependence of the effective second order susceptibilities versus the applied photoinduced 

power density. 

 

From Figure 4, one can see that the optimal photo-solidified power density is 180 MW/cm2. 

The further decrease is caused by the some cross-linking between the chromophore and the 

OEA photopolymers, sufficiently suppressing the output SHG.  

 

3.3. Quantum chemical simulations 

 

The electronic parameters for the titled compounds were investigated using Gaussian W09 

package [65] at the DFT level [66, 67]. Initial geometries of molecules were estimated by 

PM6 method and these models were subsequently optimized by DFT B3LYP/6-31 method 

[68, 69]. The principal parameters of the electronic structure for the titled compounds and the 

hyper-polarizabilities are presented in the Tables 1, and 2, respectively. 
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 It is clearly seen that maximum second order susceptibility is observed for the NPA, and 

minimum – for DMA. For convenience the experimentally determined second order 

susceptibilities are given in the last row of the Table 1. There is observed an obvious 

correlation between the calculated second-order hyper-polarizabilities and experimentally 

measured effective second-order hyper-polarizabilities. Moreover, there is also observed a 

correlation with the ground state dipole moments. 

 
Table 1. Principal parameters of electronic structure for the titled compounds   

 

E HOMO,  
eV 

E LUMO, 
eV 

dE, 
eV 

Dipole 
moment  β (esu) 

THQ  -5.308 -2.530 2.778 9.1588 6.6715·10-30 

DPA  -5.416 -2.748 2.668 9.5178 6.4198·10-30 

NPA  -5.429 -2.736 2.693 9.6621 7.5531·10-30 

MPA  -5.520 -2.677 2.843 10.5492 6.2090·10-30 

DMA  -5.521 -2.653 2.868 10.7574 5.3118·10-30 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

Table 2. Values of the hyperpolarizabilities calculated theoretically (in esu) and compared 

with the experimentally measured second order susceptibilities in pm/V at wavelength 1064 

nm (in brackets).   

 

 
DMA DPA MPA NPA THQ 

βxxx -609.3187 -725.8475 -697.4138 -780.3962 744.5081 

βxyy -23.9171 -46.8246 -24.9234 -62.8461 16.178 

βxzz 22.1679 14.833 8.6417 -10.7969 -28.3037 

βyyy 15.5131 -8.1277 -0.8136 25.7757 3.8524 

βxxy 55.3835 -124.3877 -70.1013 164.9506 55.8662 

βyzz -2.8579 -1.3703 -2.9697 -11.2767 4.3444 

βzzz 0.0031 1.9806 3.0718 -4.5096 6.5477 

βxxz -0.0033 -58.1248 -46.1329 54.3306 103.0043 

βyyz 0.0021 -7.8128 1.8660 2.7321 -1.4015 

βxyz 0.0011 1.0092 11.3957 -1.5537 -9.8352 

βx -611.0679 -757.8391 -713.6955 -854.0392 732.3824 

βy 68.0387 -133.8857 -73.8846 179.4496 64.063 

βz 0.0019 -63.957 -41.1951 52.5531 108.1505 

β(esu) 

deff 

5.3118·10-30 

 

6.6715·10-30 

 

6.2090·10-30 

 
7.5531·10-30  6.4198·10-30  

deff  
(1064 
nm)            

 (0.56 pm/V) (1.67 pm/V) (1.06 pm/V) (2.1 pm/V) (1.49 pm/V) 

 

The principal space distributions of the HOMO and LUMO molecular orbital levels are 

presented in Fig. 5.  
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THQ  HOMO 

 
THQ  LUMO 

 
 

Fig. 5. Space distribution of the HOMO and LUMO molecular orbitals. 
 
This figure unambiguously confirms an existence of charge transfer between the donor-

acceptor groups. The space separation between these groups may be a consequence of the 

different polarizabilities of the donor and acceptor groups determining the charge transfer. 

The π-conjugated bonds play here crucial role, however the energy positions of the LUMO 

also play substantial role. 
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Following the approach described previously [6,7,70,71], the fundamental limit for resonance 

effective second-order optical hyperpolarizability β is equal to 57 × 10−28 esu. This is obtained 

by taking into account of the influence of polymer. However, the effective hyper-

polarizabilities evaluated from the experimental SHG time kinetics curves were varied from 

7,31 × 10−30 to 8,7 × 10−30 esu. This fact principally agreed with the intrinsic hyper-

polarizabilities determined by the ratio between the measured and the fundamental limits of 

the mentioned model equal to about 0.013, which is comparable with the other organic 

molecules [4]. Without the dc-field, one can observe decrease of the susceptibility up to 40–

50 % with respect to that maximally achieved. 

 This fact shows more efficient properties of the titled chromophores with respect to 

other organic NLO chromophores including those possessing larger π-conjugated chains and 

the d-localized states [71‒75]. 

 

3.4. Electrochemical studies and UV-Vis absorption spectra – experimental HOMO-LUMO 

energy levels 

 

In order to determine the experimental HOMO energy levels, the electrochemical oxidation 

potentials were examined by means of cyclic voltammetry (CV) and confirmed by 

independent measurements of differential pulse voltammetry (DPV). The oxidation part of 

cyclic voltammograms of studied benzoxazoles: DMA, MPA, DPA, NPA and THQ, together 

with ferrocene, are depicted in Figure S6 (see Supplementary Data). The investigated 

benzoxazoles exhibit reversible oxidation peaks (excluding THQ, for which reversal peak is 

very weak) at the platinum electrode with reference to non-aqueous reference electrode 

(Ag/Ag+, calibrated with ferrocene/ferrocenium redox couple). 

According to the Koopmans’ theorem the energy of the HOMO is a good approximation to 

the negative experimental ionization potential (−IP). Ionization potentials were calculated as 

follows: − IP = EHOMO = − (1.4 ± 0.1) × (qVCV) − (4.6 ± 0.08) eV where: q – electron charge in 

ē, VCV = Eox − the first oxidation potential obtained from CV measurements in V) [76]. 

LUMO energy levels were determined from the following equation: LUMO = − (IP + E00), 

where E00 − optical energy gap evaluated from the onset of the first absorption band of the 

compounds in dichloromethane solution (the spectra are depicted in Figure 6).  
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Figure 6. Absorption spectra for studied molecules (DMA, blue; MPA, red; DPA, green, NPA, orange 

and THQ, pink), recorded in dichloromethane solutions.  

 

The values of oxidation potentials, optical energy gaps and HOMO/LUMO energy levels are 

given in Table 3.  

 

Table 3. Oxidation potentials, energy gaps, HOMO and LUMO energy levels for studied 

molecules. 

Eox/ferrocene [eV] HOMO [eV] Egap [eV] LUMO [eV] 

DMA  0.612 -5.457 3.069 -2.388 

MPA  0.610 -5.454 3.019 -2.435 

DPA  0.656 -5.518 2.921 -2.597 

NPA  0.650 -5.510 2.964 -2.546 

THQ  0.470 -5.258 2.897 -2.361 

The HOMO energy levels agree quite well with those predicted by DFT calculations (see 

Table 1). Calculated Egap and, in consequence, LUMO levels, seem to be underestimated. 

However, one has to remember that calculated HOMO and LUMO energy levels could vary 

depending on the chosen functional [77]. In addition, DFT methodology leads to problems of 

accurate approximation of energy gap in push-pull molecules with possible rotations of donor 
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group [78]. Finally there exists some influence of surrounding polymer which changes the 

output susceptibilities [79‒81]. 
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5. Conclusions 

 

In summary, we have shown a possibility to use the substituted 4-(5-nitro-1,3-benzoxazol-2-

yl)aniline) chromophores embedded into the photopolymer matrices for the optically operated 

second harmonic generation. It is shown that varying the effective external fields’ one can 

operated by the output NLO parameters. The appropriate variation of the backside donor 

group allows effectively operated by second order susceptibilities. More importantly, varying 

the UV-induced power at 371 nm, one can operate by the photo-solidified power for operation 

by the effective second order susceptibilities. The DFT simulations confirm the principal role 

of the donor–acceptor intra-chromophore charge transfer in the observed output second-order 

efficiencies. However, some role is played by external fields. The effects are crucially 

dependent on the photoillumination time. 
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Research Highlights 

• Second order nonlinear optical susceptibilities of organic chromophores/photopolymer 
matrices were studied. 

• Microscopic hyper-polarizabilities were obtained within the B3LYP DFT approach. 

• SHG efficiency versus the photoinduced laser power density is presented. 
• DFT simulations confirm the donor–acceptor charge transfer in the observed output 

second-order efficiencies. 

• The effects are crucially dependent on the photo-illumination time. 

 


