Journal of Organometallic Chemistry, 236 (1982) C49—C52 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

THE FORMATION OF DIMETALLOCYCLES FROM REACTIONS OF ALKYNES WITH $(\eta \text{-}C_5\text{Me}_5)_2\text{Rh}_2(\text{CO})_2$; X-RAY STRUCTURE OF $[(\eta \text{-}C_5\text{Me}_5)_2\text{Rh}_2(\mu \text{-}\text{CO})\{\mu \text{-}\eta^2,\eta^2\text{-}\text{C}(\text{O})\text{C}_2(\text{CF}_3)_2\}]$

RON S. DICKSON*, GARY S. EVANS, and GARY D. FALLON

Department of Chemistry, Monash University, Clayton, Victoria 3168 (Australia)
(Received June 29th, 1982)

Summary

The complexes $(\eta - C_5 Me_5)_2 Rh_2(\mu - CO) \{\mu - \eta^2, \eta^2 - C(O) CRCR\}$ are obtained from reactions between $(\eta - C_5 Me_5)_2 Rh_2(CO)_2$ and the alkynes $RC \equiv CR$ ($R = CF_3$, $CO_2 Me$, or Ph) at 25°C. The molecular geometry of the complex with $R = CF_3$ has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a $\mu - \eta^2$, η^2 conformation. Other complexes isolated from these reactions include $(\eta - C_5 Me_5)Rh(C_6R_6)$ ($R = CF_3$, $CO_2 Me$), $(\eta - C_5 Me_5)_2 Rh_2(C_4R_4)$ ($R = CO_2 Me$) and $(\eta - C_5 Me_5)_2 Rh_2(CO_2 C_2 R_2)$ (R = Ph). The reaction between $(\eta - C_5 Me_5)_2 Rh_2(CO)_2$ and $C_6F_5C \equiv CC_6F_5$ gives $(\eta - C_5 Me_5)_2 Rh_2(CO)_2(C_6F_5C_2C_6F_5)$. Mononuclear complexes such as $(\eta - C_5 Me_5)_2 Co_2(CO)_2$ and alkynes at 25°C.

Dimetallocycles can be formed by the condensation of unsaturated organic molecules (e.g. $RC\equiv CR$) with other substrates (e.g. $RC\equiv CR$, CO, CNR) on a dimetal centre. These ring systems have been implicated in a variety of catalytic processes [1, 2]. If the formation, rearrangement, and breaking of new C—X bonds in these systems could be achieved under mild conditions, then a better understanding of the precise role of particular dimetallocycles might be developed. There have been some successes [3—6] in this area recently, and we now report further progress that emanates from our investigations of reactions between $(\eta-C_5Me_5)_2Rh_2(CO)_2$ and alkynes at room temperature.

The major products isolated from the reactions between $(\eta - C_5 Me_5)_2 Rh_2(CO)_2$ and hexafluorobut-2-yne in acetone at 25° C are the *tetrahapto*-benzene complex $(\eta - C_5 Me_5)Rh\{\eta^4 - C_6(CF_3)_6\}$ (ca. 20% yield) and an orange-red solid, $(\eta - C_5 Me_5)_2 Rh_2(\mu - CO)\{C(O)C_2(CF_3)_2\}$ (ca. 50% yield) (Found: C, 45.0; H, 4.4;

^{*}To whom correspondence should be sent.

F, 16.1. $C_{26}H_{30}F_6O_2Rh_2$ calcd.: C, 45.0; H, 4.4; F, 16.4%). The infrared spectrum (CH₂Cl₂ soln.) of the latter complex reveals a bridging carbonyl (ν (CO) at 1819vs cm⁻¹) and a ketonic carbonyl (ν (CO) at 1717vs(sh) and 1698s cm⁻¹). The NMR spectra (CDCl₃ solutions) show inequivalent C_5Me_5 (δ (Me) at 1.88 and 1.81 ppm) and CF₃ groups (δ 54.8(q) and 59.3(qd) ppm). The precise geometry of this complex has been determined by single crystal X-ray diffraction data.

Crystal data: $C_{26}H_{30}F_6O_2Rh_2$, M=694.36, monoclinic, space group $P2_1/n$, a 9.451(4), b 15.287(5), c 18.821(8) Å, β 98.66(5)°, U 2688.2 ų, D_m 1.72(3), D_c (Z=4) 1.72 g cm⁻³, F(000)=1384, μ 11.6 cm⁻¹ for Mo- K_α radiation (λ 0.7107 Å).

Single crystal X-ray diffraction data were collected out to a limit of θ 35° with a Philips PW1100 X-ray diffractometer. For 9282 unique reflections $[I \ge 3\sigma(I)]$ R is 0.066*.

A representation of the structure and some important bond parameters are given in Fig. 1. It is interesting that the μ - η^2 , η^2 conformation of the bridging unit —CR: CR·CO— is subtly different from that established for each of the related complexes $(\eta$ -C₅H₅)₂Rh₂(CO)₂{ μ - η^1 , η^1 -C(O)C₂(CF₃)₂}[6], $(\eta$ -C₅H₅)₂Ru₂(CO)(μ -CO){ μ - η^1 , η^3 -C(O)C₂Ph₂} [4], $(\eta$ -C₅H₅)₂W₂(CO)₄{ μ - η^2 , η^2 -C(O)C₂(CO₂Me)₂} [5].

An analogous complex $(\eta - C_5 Me_5)_2 Rh_2(\mu - CO) \{\mu - \eta^2, \eta^2 - C(O)C_2(CO_2 Me)_2\}$ is obtained in ca. 65% yield from the reaction between $(\eta - C_5 Me_5)_2 Rh_2(CO)_2$ and dimethyl acetylenedicarboxylate in acetone at 25°C (Found: C, 50.1; H, 5.5; mol. wt. $(M^+, m/e, 674)$. $C_{28}H_{36}O_6 Rh_2$ calcd.: C, 50.0; H, 5.4%; mol. wt. 674).

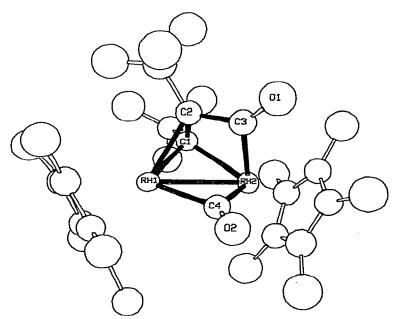


Fig. 1. Molecular structure of $[(\eta-C_5Me_5)_2Rh_2(\mu-CO)(\mu-\eta^2,\eta^2-C(O)C(CF_3)C(CF_3))]$. Bond lengths: Rh(1)—Rh(2) 2.687(1), Rh(1)—C(1) 2.009(8), Rh(1)—C(2) 2.167(9), Rh(2)—C(1) 2.057(8), Rh(2) . . . C(2), Rh(2)—C(3) 2.049(10), C(1)—C(2) 1.456(12), C(2)—C(3) 1.415(13) Å.

^{*}Atomic coordinates for this work are available from the author.

In the infrared spectrum (CHCl₃ solution), ν (CO) are observed at 1813vs and 1700vs(br) cm⁻¹; the ¹H NMR spectrum shows resonances at δ 3.94 (s, 3H), 3.55 (s, 3H), 1.81 (s, 15H), and 1.75 (s, 15H) ppm. Upon heating solutions of the complex to ca. 100° C, there is considerable broadening of the pair of CO₂Me resonances at δ 3.94 and 3.55 ppm, and coalescence (at ca. 60°C) of the C₅Me₅ resonances at δ 1.81 and 1.75 ppm. This indicates that the molecule is fluxional. Exchange of the C₅Me₅ environments could occur either by rupture of the metal—carbon (ketonic) or the carbon—carbon (ketonic) bond (cf. ref. 4 and 5), and measurement of the ¹³C NMR spectrum is planned to determine which mechanism is involved. Minor products isolated from this reaction are the *tetrahapto*-benzene complex $(\eta$ -C₅Me₅)Rh[η ⁴-C₆(CO₂Me)₆] (ca. 15% yield) and the binuclear metallodiene complex $(\eta$ -C₅Me₅)₂Rh₂[C₄(CO₂Me)₄] (ca. 6% yield).

Again, an analogous product is obtained from the reaction of $(\eta\text{-}C_5\text{Me}_5)_2\text{Rh}_2$ -(CO)₂ and diphenylacetylene. The dark red solid $(\eta\text{-}C_5\text{Me}_5)_2\text{Rh}_2(\mu\text{-}CO)\{\mu\text{-}\eta^2,\eta^2\text{-}C(O)C_2\text{Ph}_2\}$ is isolated in ca. 70% yield and has been characterized by elemental (Found: C, 60.9; H, 5.7. $C_{36}H_{40}O_2\text{Rh}_2$ calcd.: C, 60.9; H, 5.7%) and spectroscopic (ν (CO) at 1794vs and 1667vs cm⁻¹ in the IR; δ (Me) at 1.52 and 1.48 in the ¹H NMR) analysis. Other products of different type are obtained also in this system. A dark red complex of formula $(\eta\text{-}C_5\text{Me}_5)_2\text{Rh}_2\{\text{CO}_2\text{C}_2\text{Ph}_2\}$ is isolated in ca. 12% yield (Found: C, 60.5; H, 6.0. $C_{35}H_{40}O_2\text{Rh}_2$ calcd.: C, 60.2; H, 5.8%). A parent ion at m/e 698 (3%) is observed in the mass spectrum of this complex, and there is a prominent peak at m/e 654 (68%) due to loss of CO₂ from the parent. This and the other spectroscopic properties (IR (CH₂Cl₂), ν (CO) at 1713m cm⁻¹; ¹H NMR (CD₂Cl₂), δ (Me) at 1.67 and 1.52 ppm) are consistent with a structure such as I.

$$(\pi - C_5 \operatorname{Me}_5) \operatorname{Rh}$$
 $(\pi - C_5 \operatorname{Me}_5) \operatorname{Rh}$
 $(\pi - C_5 \operatorname{Me}_5) \operatorname{Ph}$
 (Π)
 (Π)

A related mononuclear complex of formula $(\eta\text{-}C_5\text{Me}_5)\text{Rh}\{\text{CO}_2\text{C}_4\text{Ph}_4\}$ has been obtained in ca. 6% yield (Found: C, 73.3; H, 5.5. $\text{C}_{39}\text{H}_{35}\text{O}_2\text{Rh}$ calcd.: C, 73.3; H, 5.5%). In the mass spectrum, prominent peaks are observed at 638 (40%, P), 610 (100%, P — CO), and 594 (17%, P — CO₂). There is a single δ (Me) at 1.44 ppm in the NMR spectrum, and ν (CO) is observed at 1694s cm⁻¹ in the

infrared spectrum. These results are consistent with a structure II. The incorporation of [O] in structures I and II is unusual (cf. ref. 7), and further work is needed to establish the source of the oxygen.

The reaction between $(\eta - C_5 Me_5)_2 Rh_2(CO)_2$ and decafluorodiphenylacetylene in acetone at 25°C gives $(\eta - C_5 Me_5)_2 Rh_2(CO)_2(C_6 F_5 C_2 C_6 F_5)$ (75% yield) (Found: C, 49.0; H, 4.1; F, 21.1. $C_{36}H_{30}F_{10}O_2 Rh_2$ calcd.: C, 48.6; H, 3.4; F, 21.3%). The spectroscopic properties (e.g. $\nu(CO)$ at 1970vs cm⁻¹ in the IR and δ (Me) at 1.76(s) ppm in the NMR) are consistent with a μ - η ¹ attachment of the alkyne and a trans-arrangement of the terminal carbonyls as has been established [8] for $(\eta$ -C₅H₅)₂ Rh₂(CO)₂(CF₃C₂CF₃). We have not been able to induce the complex to undergo transformation to $(\eta$ -C₅Me₅)₂Rh₂(μ -CO) {COC₂(C₆F₅)₂}.

Similar reactions between $(\eta - C_5Me_5)_2Co_2(CO)_2$ and alkynes generally give mononuclear complexes such as $(\eta - C_5Me_5)Co\{C_4(CF_3)_4CO\}$ (79% yield).

Acknowledgement. We are grateful to the Australian Research Grants Scheme for a research grant (R.S.D.) and to Monash University for a Postgraduate Award (G.S.E.).

References

- I G. Wilke, Pure and Appl. Chem., 50 (1978) 677.
- M.H. Chisholm and F.A. Cotton, Accts. Chem. Res., 11 (1978) 356.
- 3 S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.J. Winter, and P. Woodward, Chem. Commun., (1978) 221.
- 4 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, Chem. Commun., (1980) 409.
- 5 S.R. Finnimore, S.A.R. Knox, and G.E. Taylor, Chem. Commun., (1980) 411.
- 6 R.S. Dickson, B.M. Gatehouse, M.C. Nesbit, and G.N. Pain, J. Organometal. Chem., 215 (1981) 97.
- 7 W.C. Trogler and J.A. Ibers, Organomet. 1 (1982) 536, and ref. therein.
- 8 R.S. Dickson, S.H. Johnson, H.P. Kirsch, and D.J. Lloyd, Acta Cryst., B, 33 (1977) 2057.