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smry: High kinetic stereoselectivity in the base-catalyzed fragmentation of 1,7-dicarbo- 
methoxytricyclo[3.3.1.03~7lnonan-4-one 12 led to a convergent, high-yielding synthesis of &. 

The enzyme chorismate mutare catalyzes (what is apparently) the Claisen rearrangement 

of chorismic acid Lto prephenic acid 2_via a chair transition state1 as depicted below.2 

Since this reaction represents the first committed biosynthetic step to phenylalanine and 

tyrosine in plants and microorganisms. a potent inhibitor might possess valuable antibacterial 

and herbicidal properties. However, less is known about the mechanism of enzymic rcarrange- 

ment3 than of the non-enzymic process. 4 As a result, more progress has been made in the 

synthesis of transition state analogs than in the design of mechanism-based inhibitors.5-8 

Recently Bartlett and Johnson described the synthesis of oxabicyclic diacids a-$., of which 3_ 

was a more potent S. coli matase inhibitor than adamantane-l-phosphonic acid (AD-PO3H3). the 

most active inhibitor known at the time.8 Our interest in this area4b had led us to synthe- 

size carbooyclic diacids 6_ and 2. corresponding to 3_ and 2. We now report that the endo isomer 

h is also more potent than AD-PO383 and supports the proposed picture 8 of a rearrangement 

transition state with the enol pyruvate oarboxyl markedly tilted towards the unsaturated ring. 
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Methyl vinyl ketone was converted to 2-(t&-bntyldimethylsilyloxy)-buta-1,3-diene. by 

analogy with a known procedure. 10 Heating the diene with methyl propiolate furnished cyclo- 

addnct &which could be alkylated [lithium isopropylcycloherylamide, methyl (2-bromomethyl)- 

acrylatel to afford diester 5 (Scheme).ll In tolnene at reflex, 9_nnderwent a smooth intra- 

molecular Diels-Alder cycloaddition to furnish the symmetrical tricyclo[3.3.1.D2~71non-3-ene 

diester &Q in 96% yield.12 Hydrolysis of the enol silpl ether group in 3 afforded symmetri- 

cal ketone l&l_ (96%). It was hoped that intramolecular p-elimination of 11 would occur with 

kinetically controlled protonation of the resultant bicyclo[3.3.llnon-2-en-4-one ester enolate 

from the less hindered (exe) face. In the event, exposure of 11 to NaOCH3-CH30H at room 

temperature produced endo enone-diacid 12 as the exclusive product (waxy solid, 97%). The C7- 

hydrogen resonance of the corresponding diester 12 (t, 6~2.77, J=6.7 Hz)13 conclusively estab- 

lished the axial configuration of its C7-carboryl group. Reduction of 13 with NaBH4-CeC13 fnr- 

nished allylic alcohol 13 (100%) which could be transformed by the Mitsanobn reaction into 

allylic benzoate 15 (92%). l4 Exposure of this triester to excess NaOE (CH30H-H20. rt, 9 h, 

78%) furnished endo-hydroxydiacid 6. Alternatively, s could be epimerized (KH-THF, then TFA) 

to a new triester (90%) which, when saponified as above, gave exo-hydroxydiacid 7_ (tt, &2.45, 

J=4.3, 13.1 Hz; C7-hydrogen).15 

Racemic samples of 6_ and 7_ along with AD-PO382 were evaluated as inhibitors of E. coli 

chorismate mutase/prephenate dehydrogenase. The enzyme was partially purified according to 

Sampathgnmar and Morrison, 16 then further purified by Blue Dextran-Sepharose chromatography 

using a method similar to that reported by Hudson et al 17 -* Assays were performed at 30°C and 

pH 7.5 according to a published procedure .16 Results with 2. [150=1.85 mM; 150/Km = 20.61 

indicated that this exo-diacid was a weaker inhibitor than AD-PO3H2 [I50 = 0.70s@; 150/~m = 

7.81 when assayed under identical conditions.18 In contrast, the endo-diacid 6_nas more 

potent than AD-PO3H2, with an 150 = 0.43mM_ [I50/4 = 4.8 at pH 7.51. While a direct comparison 

of 6_ with oxabicyclic diacid 3_ was not possible, our findings taken together with Bartlett’s 

results9 suggest interesting design strategies for useful new inhibitors of ohmismate mtuo. 
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(a) Lithium isopropylcyclohexylamine, THF, -78OC under Ar, then methyl (2-bromomethyl)acrylate (1.2 equiv); 95% 
(b) Toluene, reflux , under Ar, 68 hours; 90%. 
(c) Trifluoroacetic acid, methanol, rt under Ar, 6 hours; 96%. 
(d) Sodium methoxide (4 equiv, 0.3M), methanol, rt under Ar, 19 hours; 97%. 
(e) Diazomethane, ether, -78’C under Ar, until TLC monitortng indicated complete reaction; 87%. 
(f) Sodium borohydrfde (1.3 equiv). cerium (Ill) chloride (1.2 equiv), methanol, r-t, 5 min. then 10% HCI; 100%. 
(g)Triphenylphosphine (2 equiv). benzoic acid (2 equiv), diisopropyl azodicarboxylate (2 equiv), 

THF. rt under Ar, 18 hcurs; 92%. 
(h) Sodium hydroxide (4 equiv), 161 methanolmater. rt under Ar, 9 hours, 78%. 
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It is difficult to compare reported values for I50 and Km, which vary widely depending on 
the particular enzyme preparation and assay conditions used. 
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