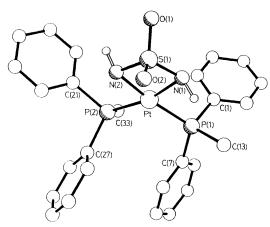
Facile Synthesis of SN and S-N-O Complexes in Liquid Ammonia; X-Ray Structure of Pt[(HN)₂SO₂](PPh₂Me)₂


Ivan P. Parkin, Alexandra M. Z. Slawin, David J. Williams, and J. Derek Woollins*

Department of Chemistry, Imperial College of Science and Technology, South Kensington, London SW7 2AY, U.K.

Addition of SCl₂, SOCl₂, SO₂Cl₂, or SeCl₄ to liquid ammonia followed by $Pt(PR_3)_2Cl_2$ gives complexes of the type $Pt(S_2N_2)(PR_3)_2$, $Pt(NSO)_2(PR_3)_2$, $Pt(NSO)_2(PR_3)_2$, and $Pt(Se_2N_2)(PR_3)_2$ respectively; the X-ray structure of $Pt[(HN)_2SO_2](PPh_2Me)_2$ is reported.

A number of groups are involved in the synthesis of metalla-sulphur-nitrogen compounds.^{1,2} These compounds are of interest since the metal centres stabilise otherwise unknown SN anions and some of the materials possess interesting solid state structures. The majority of the prepara-

tive routes involve a number of stages, typically including the isolation of one or more sulphur–nitrogen precursors. For example, we have described the synthesis of $Pt(S_2N_2)(PR_3)_2$ (1) from reactions^{3,4} involving $Na[S_3N_3]$ or $S_4N_4H_4$. Although these reactions proceed in good yield $Na[S_3N_3]$ is explosive

and S₄N₄H₄ is obtained by reduction of S₄N₄ which is also difficult to handle. There have been some reports on the preparation of NSO⁻ complexes. We have⁵ used Hg(NSO)₂ whilst Heberhold⁶ and Roesky⁷ used potassium salts of NSO⁻ and RNSN⁻ which are very air sensitive and explode violently on contact with chlorinated solvents. Recently,^{8—10} we have found that a number of SN compounds [e.g. S₄N₄, S₄N₄O₂, S(NSO)₂] dissolve and react to form metal complexes in liquid ammonia. Here, we report on simple 'one-pot' routes which do not require the isolation of any SN or SNO starting materials or special handling precautions (equations 1—3). Furthermore, we have also been able to apply this methodology to the synthesis of the first examples of complexes containing the bidentate O₂S(NH)₂²⁻ or Se₂N₂²⁻ ligands (equations 3 and 4).

$$2SCl_2 + 8NH_3(1) + PtCl_2(PR_3)_2 \rightarrow Pt(S_2N_2)(PR_3)_2$$

$$(1)$$

$$+ 6NH_4Cl \quad (1)$$

$$2SOCl_2 + 8NH_3(1) + PtCl_2(PR_3)_2 \rightarrow cis-Pt(NSO)_2(PR_3)_2$$
(2)
 $+ 6NH_4Cl$ (2)

$$SO_2(NH_2)_2 + 2NH_3(1) + PtCl_2(PR_3)_2 \rightarrow Pt[(HN)_2SO_2](PR_3)_2$$
(3)
+ $2NH_4C1$ (3)

$$2SeCl_4 + 8NH_3(l) + PtCl_2(PR_3)_2 \rightarrow Pt(Se_2N_2)(PR_3)_2$$
(4)
$$6NH_4Cl + 2Cl_2 \quad (4)$$

In a typical reaction the sulphur halide or oxyhalide (1—2.5 mmol) is carefully added to NH₃(l) (10 ml) at $-78\,^{\circ}$ C. After stirring for ca. 30 min PtCl₂(PR₃)₂ (0.5—1.25 mmol) is added and the reaction is then allowed to warm slowly to room temperature with the ammonia being blown off under a stream of nitrogen. The final products are obtained by recrystallisation from CH₂Cl₂–petroleum ether. Yields are in the range 50—75%.

The products gave satisfactory microanalyses, and for (1) and (2) their spectroscopic properties are identical to those previously reported.^{3,10} Compounds (3) and (4) have the expected n.m.r. properties† and in the case of (3; PR₃ = PPh₂Me) we have determined the X-ray structure.‡ The molecule (Figure 1) has the expected square planar geometry with Pt-P and Pt-N bond lengths that are typical for PtII. The PtN₂S ring is essentially planar (max. deviation 0.03 Å) with the oxygen atoms lying equidistant above and below the plane. The ring is rotated ca. 5° with respect to the P(1)–Pt–P(2)plane. The sulphamido ligand has slightly lengthened S=O bonds compared to sulphamide¹¹ and SO₄²⁻ whilst the S-N bond lengths are intermediate between single and double and comparable to those in sulphamide. Both the sulphur and the nitrogen atoms are pyramidal, and within the four-membered ring the angles, of necessity, are reduced from their normal value; those at nitrogen and sulphur are ca. 96° whilst the N(1)-Pt-N(2) angle is appreciably reduced at 71.9(2)°. The Pt $\cdot \cdot \cdot$ S distance is 2.75 Å and the N(1) $\cdot \cdot \cdot$ N(2) distance is 2.43 Å. There is a weak intermolecular H-bond between N(1) and O(2) [3.10 Å, N(1)– $H \cdot \cdot \cdot O(2)$ 142°].

We are grateful to Johnson Matthey for loans of precious metals.

Received, 6th April 1989; Com. 9/01424A

References

- 1 P. F. Kelly and J. D. Woollins, Polyhedron, 1986, 5, 607.
- 2 T. Chivers and F. Edelmann, Polyhedron, 1986, 5, 1661.
- 3 P. A. Bates, M. B. Hursthouse, P. F. Kelly, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1986, 2367.
- 4 R. Jones, P. F. Kelly, D. J. Williams, and J. D. Woollins, Polyhedron, 1987, 6, 1541.
- 5 R. Short, M. B. Hursthouse, T. G. Purcell, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1987, 407.
- 6 M. Heberhold, F. Neumann, G. Suss-Fink, and U. Thewalt, Inorg. Chem., 1987, 26, 3612.
- 7 H. Plenio, H. W. Roesky, M. Noltemeyer, and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1987, 1483.
- 8 P. S. Belton, I. P. Parkin, D. J. Williams, and J. D. Woollins,
- J. Chem. Soc., Chem. Commun., 1988, 1479.
 9 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins,
- Chem. Soc., Chem. Commun., 1989, 58.
 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins, Polyhedron, 1989, 8, 835.
- 11 K. N. Trueblood and S. W. Mayer, Acta Crystallogr., 1956, 9, 628.
- † ³¹P *N.m.r. data* for (3; PR₃ = PPh₂Me) δ 7.0 p.p.m. [${}^{1}J({}^{31}P-{}^{195}Pt)$ 3342 Hz]; (4; PR₃ = PPh₂Me) δ 45.7, 37.1 p.p.m. [${}^{2}J({}^{31}P-{}^{31}P)$ 10, ${}^{1}J$ 2817, 2627 Hz].
- ‡ Crystal data for (3; PR₃ = PPh₂Me): C₂₆H₂₈N₂P₂O₂PtS, M = 689.6, triclinic, a = 10.645(2), b = 10.823(2), c = 12.132(3) Å, $\alpha = 83.31(2)$, $\beta = 88.36(2)$, $\gamma = 68.22(2)^\circ$; U = 1289 ų, space group $P\overline{1}$, Z = 2, $D_c = 1.78$ g cm⁻³, μ (Cu- K_α) = 124 cm⁻¹. Crystal dimensions 0.13 × 0.15 × 0.20 mm. Data were measured on a Nicolet R3m diffractometer with graphite monochromated Cu- K_α radiation using ω -scans. The structure was solved by the heavy atom method and refined using anisotropic thermal parameters and absorption corrected data, to give R = 0.032, $R_\omega = 0.034$ for 3416 independent observed reflections $[|F_o| > 3\sigma(|F_o|)$, $\theta \le 58^\circ$]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.