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Oxoborane (RBO) Complexation and Concomitant Electrophilic 
Bond Activation Processes 
Anindya K. Swarnakar, Christian Hering-Junghans, Michael J. Ferguson, Robert McDonald, and Eric 
Rivard* 

Abstract: Donor-acceptor complexes of the oxoboranes, ClB=O and 
HOB=O, were synthesized and each feature short multiply bonded 
(B=O) linkages. The retention of high Lewis acidic character within 
these encapsulated monomeric oxoboranes was manifest by their 
ability to support C-F and Si-O bond activation/functionalization. The 
reported ClB=O complexes can be regarded as synthetic surrogates 
of the [BO]+ cation, an inorganic analogue of CO. 

Monomeric oxoboranes (RBO) represent a fundamental building 
block of the synthetically useful boroxine (RBO)3 compound 
class.[1] Due to their unsaturated nature and reactive polar B=O 
bonds, oxoboranes have only been identified within low 
temperature matrices or in the gas phase.[2] However 
encouraging work by Pachaly and West revealed the 
intermediacy of the bulky oxoborane (2,4,6-tBu3C6H2)BO via 
trapping experiments.[3,4] This study was complemented by 
impressive work by Braunschweig and coworkers who used 
metal-boron complexation to stabilize triply bonded B≡O as a 
monodentate ligand.[5] Such breakthroughs challenge 
conventional bonding models and provide chemists with new 
reactive entities[6] for use in advanced material construction,[7] 
and for non-metal mediated small molecule 
activation/catalysis.[8] In this Communication a donor-acceptor 
protocol[9] is applied to isolate adducts of ClB=O and HOB=O. 
The resulting chlorooxoborane (ClB=O) adducts can act as 
electrophilic surrogates for [B≡O]+ (an inorganic analogue of 
CO), opening the door to controllable C-F and Si-O bond 
activation processes.   
 The title chloroboroxane complexes were obtained via 
Lewis-acid mediated ClSiMe3 elimination from IPr•Cl2BOSiMe3 

(1)[10,11] (Eqn. 1 and Scheme 1; IPr = (HCNDipp)2C:; Dipp = 2,6-
iPr2C6H3). X-ray crystallography confirmed the formation of the 
dihalosilyl boryl precursor IPr•BCl2OSiMe3 (1) that exhibits 
tetrahedral coordination at boron (Figure S22)[11] and a B-O 
single bond length of 1.393(2) Å.[4e]  
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 Compound 1 was heated to 100 °C in toluene for 12 hrs in 
an attempt to release Me3SiCl and form a carbene-stabilized 
ClB=O unit, however no reaction transpired. Treatment of 1 with 
the Lewis acid BArF

3
[12,13] (ArF = 3,5-(F3C)2C6H3) followed by 

heating to 80 °C for 12 hrs afforded partial conversion of 1 (20 % 
by NMR spectroscopy) into the novel oxoborane donor-acceptor 

complex IPr•ClB=O•BArF
3 (2; Scheme 1) which was later 

identified by X-ray crystallography (Figure S23).[11] Prolonged 
heating of an equimolar mixture of 1 and BArF

3 in toluene for 60 
hrs at 80 °C yielded IPr•BF3

[14] as a carbene-containing product. 
This observation is in line with electrophilic boron-based 
activation of the C(sp3)-F bonds in ArF, driven by the formation of 
strong B-F linkages in IPr•BF3 (vide infra).  
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Scheme 1. Reaction of 1 with BArF

3 leading to the formation of 
IPr•B(Cl)O•BArF

3 (2) and eventual C-F bond activation.  
 

 In order to mitigate degradative C-F activation within an 
oxoborane complex, BArF

3 was replaced with B(C6F5)3 in the 
synthesis, as this latter borane contains less reactive C(sp2)-F 
bonds.[15] Accordingly, stirring a toluene solution of 
IPr•BCl2OSiMe3 (1) and B(C6F5)3 at 105 °C for 24 hrs results in 
the formation of IPr•B(Cl)=O•B(C6F5)3 (3) as colorless crystals 
(Figure 1) in an isolated yield of 88 %; thus sacrificial C-F bond 
activation was effectively suppressed (Eqn. 2).  
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Figure 1. Molecular structure of IPr•B(Cl)O•B(C6F5)3 (3) with thermal 
ellipsoids presented at a 30 % probability level. All H atoms have been 
omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B(1) 
1.601(4), B(1)-O(1) 1.296(3), B(1)-Cl(1) 1.773(3), B(2)-O(1) 1.518(3); C(1)-
B(1)-O(1) 117.3(2), B(1)-O(1)-B(2) 142.1(2), Cl-B(1)-O(1) 127.7(2), C(1)-B(1)-
Cl 114.97(19). 
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Two singlet resonances were found at 26.1 and -2.7 ppm in the 
11B NMR spectrum of 3, consistent with the presence of 3- and 
4-coordinate environments, respectively. A trigonal planar 
geometry exists about the oxoborane boron atom in 3 (B(1); 
Figure 1) as evidenced by a bond angle sum at B of 
359.97(19)°. Most striking was the very short B-O length in 3 
[1.296(3) Å], consistent with B=O π-bond character. A similar B-
O bond distance [1.304(2) Å] was found in Cowley’s nacnac 
HC{C(CH3)N(C6F5)}2BO•AlCl3,[4c] however the B=O linkage in 3 
is substantial longer than the B-O triple bond length of 1.210(3) 
Å found in Braunschweig’s trans-PhS(Cy3P)2PtBO.[5] A 
diagnostic ν(BO) IR band is present at 1646 cm-1 in 3 which is 
comparable to the ν(BO) vibration noted in Kinjo’s 1,2,3,4-
triazaborole-based oxoborane (1636 cm-1).[4f]  
 Compounds 1 and 3 were investigated by DFT methods, 
and as anticipated, NBO analysis afforded a Wiberg Bond Index 
(WBI) for the central B-O linkage in 3 of 1.123, indicative of 
multiple bond character.[11] Substantial polarization of the σ and 
π components of this B-O bonding manifold toward O were also 
found (ca. 83 % of overall B-O bonding density located at 
oxygen). Natural Population Analysis (NPA) revealed a higher 
positive charge (and possible electrophilic character) at the 
oxoborane boron atom, ClBO, in 3 (0.887 e) in relation to the 
boron center in IPr•Cl2BOSiMe3 (1) (0.621 e). The LUMO of 3 
has distinct B=O π*-character whereas the accompanying B=O π 
interaction in this ClB=O complex is energetically low lying 
(HOMO-12).[11] 

 Motivated by the presence of a potentially functionalizable 
B-Cl bond in 3, we attempted to synthesize the donor-acceptor 
complexes of parent oxoborane HBO and its organo 
counterparts RBO (R = Me or Ph). When IPr•B(Cl)O•B(C6F5)3 (3) 
was combined with the hydride source K[HBsBu3] no reaction 
occurred, despite heating to 80 °C in toluene. However reaction 
of 3 with MeLi (or PhLi) in Et2O led to formation of the IPr-
backbone deprotonated[16] product 
[(Et2O)2Li][IPr•B(Cl)O•B(C6F5)3] (4•(OEt2)2) (Eqn. 3; see Figure 
S24 for crystallographic characterization).[11]      
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 We attempted to promote chloride migration in 
IPr•ClB=O•B(C6F5)3 (3) to yield the oxoborylium salt 
[IPr•B≡O]+[Cl-B(C6F5)3]-, by heating 3 to 140 °C in xylenes for 3 
days; this resulted in the complete conversion of 3 into the 
imidazolium salt [IPrH]ClB(C6F5)3 (Figure S25).[11] One possible 
path for this transformation (reproduced many times under 
rigorously anhydrous conditions) is initial chloride abstraction by 
B(C6F5)3 to yield a highly reactive oxoborylium adduct 
[IPr•B≡O]ClB(C6F5)3. This source of electrophilic [B≡O]+ could 
then react with surface Si-OH groups of the glass vessel, 
liberating H+ (trapped as IPrH+) while concurrently borylating the 
glass.  
 In order to investigate the above borylation reaction in a 
homogenous system, Ph3SiOH was combined with an equimolar 
amount of 3 at room temperature (Scheme 2). This reaction 
afforded a 1:1 mixture of the novel (hydroxy)oxoborane complex 
IPr•B(OH)O•B(C6F5)3 (5) and the previously noted imidazolium 
borate salt [IPrH]ClB(C6F5)3. To our surprise, the formation of 
Ph3SiCl (via Cl/OH exchange) was confirmed by 1H and 13C{1H} 
NMR, ruling out the direct hydrolysis of 3 to form 5; the known 
boroxine[11] [Ph3SiOBO]3 was also recovered as a product 
(Scheme 2). By increasing the amount of Ph3SiOH to 5 equiv., 

the amount of 5 formed increased two-fold. One preliminary 
mechanistic postulate is that compound 3 and Ph3SiOH initially 
interacts to afford transient [IPr•B(HOSiPh3)(Cl)O•B(C6F5)3] 
which can undergo Ph3SiCl elimination/hydroxide-chloride 
metathesis to form IPr•B(OH)O•B(C6F5)3 (5) (Scheme 2; right 
path). The same HOSiPh3 interaction complex of ClB=O could 
undergo carbene-induced deprotonation of HOSiPh3, followed 
by halide migration to B(C6F5)3 to yield [IPrH]ClB(C6F5)3 and 
transient Ph3SiO-B=O, which then trimerizes to [Ph3SiOBO]3 
(Scheme 2; left path). At high concentrations of Ph3SiOH 
additional silanol-silanol hydrogen bonding (and a reduction of 
HOSiPh3 Brønsted acidity) could lead to enhancement of 
Ph3SiCl loss over carbene-induced deprotonation. Notably, the 
mild abstraction of OH- from a silanol by the encapsulated 
ClB=O unit in 3 suggests a high degree of electrophilicity is 
present, in line with our computational studies (vide supra).  
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Scheme 2. Reaction of 3 with Ph3SiOH and the formation of 
IPr•B(OH)O•B(C6F5)3 (5). 

  
 As shown in Figure 2, the core HOB=O unit in compound 5 
possesses one shorter B(1)-O(2) bond [1.311(3) Å] and a longer 
B(1)-O(1) linkage involving the hydroxyl group [1.354(3) Å]; the 
remaining dative B-O bond between B(C6F5)3 and the HOB=O 
unit is substantially elongated [1.504(3) Å]. Compound 5 is the 
first isolable complex of HOB=O; monomeric HOB=O was 
previously identified in the gas phase during the thermal 
conversion of orthoboric acid (B(OH)3) to metaboric acid 
([HOBO]3).[17]  
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Figure 2. Molecular structure of IPr•B(OH)O•B(C6F5)3 (5) with thermal 
ellipsoids presented at a 30 % probability level. All carbon-bound H atoms 
have been omitted for clarity. Selected bond lengths (Å) and angles (deg): 
C(1)-B(1) 1.636(3), B(1)-O(2) 1.311(3), B(1)-O(1) 1.354(3), O(2)-B(2) 1.504(3); 
C(1)-B(1)-O(1) 112.06(17), O(1)-B(1)-O(2) 128.97(19), B(1)-O(2)-B(2) 
133.95(16). 
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 We also attempted to form carbene-stabilized [BO]+ salts 
[IPr•BO•B(C6F5)3]A- (A- = weakly coordinating anion) by treating 
3 with either NaBArF

4 or AgOTf (OTf = OSO2CF3). While no 
reaction transpired at room temperature, heating NaBArF

4 with 3 
at 80 °C led to C-F bond activation and the generation of 
IPr•BF3. 
 The production of the ClB=O adduct 3 from 
IPr•Cl2BOSiMe3 (1) and B(C6F5)3 (Eqn. 2) likely proceeds via the 
siloxyboronium cation [IPr•BCl(OSiMe3)]+.[18] The related 
tetrachloroaluminate salt [IPr•BCl(OSiMe3)]AlCl4 (6) was 
obtained in a quantitative yield by combining 1 and AlCl3 (Eqn. 
4). X-ray crystallography (Figure 3) showed the presence of a 
trigonal planar boron center in 6, with B-O and B-Cl distances 
[1.310(4) Å and 1.758(3) Å, respectively] that match well those 
present within the ClB=O unit of 3. NBO analysis[11] of the 
[IPr•BCl(OSiMe3)]+ cation in 6 afforded a WBI of 1.049 for the B-
O bond, pointing towards possible double bond character. The 
computed NPA charge for the boron center in 6 (0.863 e) is also 
similar to that found within the ClB=O array in 3.[19] Thus 
possible parallel C-F activation chemistry could be instigated by 
the electrophilic boron center in 6. 
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 [IPr•BCl(OSiMe3)]AlCl4 (6) is thermally stable with no sign 
of decomposition or ClSiMe3 release found after heating in 
xylenes at 130 °C for 18 hrs. However compound 6 was still 
found to be an effective reagent for the C-F activation and 
functionalization (halogenation) of 1-fluoroadamantane AdF 
(Eqn. 5).  When 6 was reacted with 3 equivalents of Ad-F at 100 
°C in toluene for 16 hrs, the formation of 1-chloroadamantane 
(Ad-Cl) occurred (75 % isolated yield), along with the 
spectroscopic identification of IPr•BF3 (60 %), an [IPrH]+ salt (32 
%) and a minor unknown carbene-containing species (<8 %) as 
co-products. As before, the formation of strong B-F bonds is 
likely spurring this process, and overall this transformation is a 
useful addition to the field of main group element instigated bond 
activation.[15], [20], [21]  
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Figure 3. Molecular structure of [IPr•BCl(OSiMe3)]AlCl4 (6)  with thermal 
ellipsoids presented at a 30 % probability level. All hydrogen atoms have been 
omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-B 
1.578(4), B-O 1.310 (4), B-Cl(1) 1.758 (3), O-Si 1.7023(19); C(1)-B-O 
119.3(2), C(1)-B-Cl(1) 119.1(2), Cl(1)-B-O 121.7(2). 

 
 In conclusion, we have synthesized the first coordination 
complexes of oxoboranes, ClB=O and HOB=O. The ClB=O 
adducts and their siloxyboronium counterparts can be viewed as 
synthetic sources of the electrophilic oxoborylium cation [B≡O]+, 
an inorganic analogue of CO. Moreover initial studies show that 
these species can activate/functionalize alkane C-F and silanol 
Si-O bonds, showing a high degree of reactivity within these 
“trapped” oxoboranes. These promising initial studies provide 
ample motivation for us to explore [B≡O]+ surrogates within the 
context of nonmetal-based catalysis,[15] and to pursue to the 
synthesis of related unsaturated main group species[6] featuring 
novel bonding motifs. 
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